New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imainss | GIF version |
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by set.mm contributors, 11-Aug-2004.) |
Ref | Expression |
---|---|
imainss | ⊢ ((R “ A) ∩ B) ⊆ (R “ (A ∩ (◡R “ B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 730 | . . . . . 6 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → x ∈ A) | |
2 | brcnv 4892 | . . . . . . . . 9 ⊢ (y◡Rx ↔ xRy) | |
3 | 19.8a 1756 | . . . . . . . . 9 ⊢ ((y ∈ B ∧ y◡Rx) → ∃y(y ∈ B ∧ y◡Rx)) | |
4 | 2, 3 | sylan2br 462 | . . . . . . . 8 ⊢ ((y ∈ B ∧ xRy) → ∃y(y ∈ B ∧ y◡Rx)) |
5 | 4 | ancoms 439 | . . . . . . 7 ⊢ ((xRy ∧ y ∈ B) → ∃y(y ∈ B ∧ y◡Rx)) |
6 | 5 | adantll 694 | . . . . . 6 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → ∃y(y ∈ B ∧ y◡Rx)) |
7 | 1, 6 | jca 518 | . . . . 5 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → (x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx))) |
8 | simplr 731 | . . . . 5 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → xRy) | |
9 | elin 3219 | . . . . . . 7 ⊢ (x ∈ (A ∩ (◡R “ B)) ↔ (x ∈ A ∧ x ∈ (◡R “ B))) | |
10 | elima2 4755 | . . . . . . . 8 ⊢ (x ∈ (◡R “ B) ↔ ∃y(y ∈ B ∧ y◡Rx)) | |
11 | 10 | anbi2i 675 | . . . . . . 7 ⊢ ((x ∈ A ∧ x ∈ (◡R “ B)) ↔ (x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx))) |
12 | 9, 11 | bitri 240 | . . . . . 6 ⊢ (x ∈ (A ∩ (◡R “ B)) ↔ (x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx))) |
13 | 12 | anbi1i 676 | . . . . 5 ⊢ ((x ∈ (A ∩ (◡R “ B)) ∧ xRy) ↔ ((x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx)) ∧ xRy)) |
14 | 7, 8, 13 | sylanbrc 645 | . . . 4 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → (x ∈ (A ∩ (◡R “ B)) ∧ xRy)) |
15 | 14 | eximi 1576 | . . 3 ⊢ (∃x((x ∈ A ∧ xRy) ∧ y ∈ B) → ∃x(x ∈ (A ∩ (◡R “ B)) ∧ xRy)) |
16 | elima2 4755 | . . . . 5 ⊢ (y ∈ (R “ A) ↔ ∃x(x ∈ A ∧ xRy)) | |
17 | 16 | anbi1i 676 | . . . 4 ⊢ ((y ∈ (R “ A) ∧ y ∈ B) ↔ (∃x(x ∈ A ∧ xRy) ∧ y ∈ B)) |
18 | elin 3219 | . . . 4 ⊢ (y ∈ ((R “ A) ∩ B) ↔ (y ∈ (R “ A) ∧ y ∈ B)) | |
19 | 19.41v 1901 | . . . 4 ⊢ (∃x((x ∈ A ∧ xRy) ∧ y ∈ B) ↔ (∃x(x ∈ A ∧ xRy) ∧ y ∈ B)) | |
20 | 17, 18, 19 | 3bitr4i 268 | . . 3 ⊢ (y ∈ ((R “ A) ∩ B) ↔ ∃x((x ∈ A ∧ xRy) ∧ y ∈ B)) |
21 | elima2 4755 | . . 3 ⊢ (y ∈ (R “ (A ∩ (◡R “ B))) ↔ ∃x(x ∈ (A ∩ (◡R “ B)) ∧ xRy)) | |
22 | 15, 20, 21 | 3imtr4i 257 | . 2 ⊢ (y ∈ ((R “ A) ∩ B) → y ∈ (R “ (A ∩ (◡R “ B)))) |
23 | 22 | ssriv 3277 | 1 ⊢ ((R “ A) ∩ B) ⊆ (R “ (A ∩ (◡R “ B))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∩ cin 3208 ⊆ wss 3257 class class class wbr 4639 “ cima 4722 ◡ccnv 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-ima 4727 df-cnv 4785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |