New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imainss | GIF version |
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by set.mm contributors, 11-Aug-2004.) |
Ref | Expression |
---|---|
imainss | ⊢ ((R “ A) ∩ B) ⊆ (R “ (A ∩ (◡R “ B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 730 | . . . . . 6 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → x ∈ A) | |
2 | brcnv 4893 | . . . . . . . . 9 ⊢ (y◡Rx ↔ xRy) | |
3 | 19.8a 1756 | . . . . . . . . 9 ⊢ ((y ∈ B ∧ y◡Rx) → ∃y(y ∈ B ∧ y◡Rx)) | |
4 | 2, 3 | sylan2br 462 | . . . . . . . 8 ⊢ ((y ∈ B ∧ xRy) → ∃y(y ∈ B ∧ y◡Rx)) |
5 | 4 | ancoms 439 | . . . . . . 7 ⊢ ((xRy ∧ y ∈ B) → ∃y(y ∈ B ∧ y◡Rx)) |
6 | 5 | adantll 694 | . . . . . 6 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → ∃y(y ∈ B ∧ y◡Rx)) |
7 | 1, 6 | jca 518 | . . . . 5 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → (x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx))) |
8 | simplr 731 | . . . . 5 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → xRy) | |
9 | elin 3220 | . . . . . . 7 ⊢ (x ∈ (A ∩ (◡R “ B)) ↔ (x ∈ A ∧ x ∈ (◡R “ B))) | |
10 | elima2 4756 | . . . . . . . 8 ⊢ (x ∈ (◡R “ B) ↔ ∃y(y ∈ B ∧ y◡Rx)) | |
11 | 10 | anbi2i 675 | . . . . . . 7 ⊢ ((x ∈ A ∧ x ∈ (◡R “ B)) ↔ (x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx))) |
12 | 9, 11 | bitri 240 | . . . . . 6 ⊢ (x ∈ (A ∩ (◡R “ B)) ↔ (x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx))) |
13 | 12 | anbi1i 676 | . . . . 5 ⊢ ((x ∈ (A ∩ (◡R “ B)) ∧ xRy) ↔ ((x ∈ A ∧ ∃y(y ∈ B ∧ y◡Rx)) ∧ xRy)) |
14 | 7, 8, 13 | sylanbrc 645 | . . . 4 ⊢ (((x ∈ A ∧ xRy) ∧ y ∈ B) → (x ∈ (A ∩ (◡R “ B)) ∧ xRy)) |
15 | 14 | eximi 1576 | . . 3 ⊢ (∃x((x ∈ A ∧ xRy) ∧ y ∈ B) → ∃x(x ∈ (A ∩ (◡R “ B)) ∧ xRy)) |
16 | elima2 4756 | . . . . 5 ⊢ (y ∈ (R “ A) ↔ ∃x(x ∈ A ∧ xRy)) | |
17 | 16 | anbi1i 676 | . . . 4 ⊢ ((y ∈ (R “ A) ∧ y ∈ B) ↔ (∃x(x ∈ A ∧ xRy) ∧ y ∈ B)) |
18 | elin 3220 | . . . 4 ⊢ (y ∈ ((R “ A) ∩ B) ↔ (y ∈ (R “ A) ∧ y ∈ B)) | |
19 | 19.41v 1901 | . . . 4 ⊢ (∃x((x ∈ A ∧ xRy) ∧ y ∈ B) ↔ (∃x(x ∈ A ∧ xRy) ∧ y ∈ B)) | |
20 | 17, 18, 19 | 3bitr4i 268 | . . 3 ⊢ (y ∈ ((R “ A) ∩ B) ↔ ∃x((x ∈ A ∧ xRy) ∧ y ∈ B)) |
21 | elima2 4756 | . . 3 ⊢ (y ∈ (R “ (A ∩ (◡R “ B))) ↔ ∃x(x ∈ (A ∩ (◡R “ B)) ∧ xRy)) | |
22 | 15, 20, 21 | 3imtr4i 257 | . 2 ⊢ (y ∈ ((R “ A) ∩ B) → y ∈ (R “ (A ∩ (◡R “ B)))) |
23 | 22 | ssriv 3278 | 1 ⊢ ((R “ A) ∩ B) ⊆ (R “ (A ∩ (◡R “ B))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∩ cin 3209 ⊆ wss 3258 class class class wbr 4640 “ cima 4723 ◡ccnv 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-cnv 4786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |