New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  tpidm23 GIF version

Theorem tpidm23 3823
 Description: Unordered triple {A, B, B} is just an overlong way to write {A, B}. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23 {A, B, B} = {A, B}

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 3815 . 2 {A, B, B} = {B, B, A}
2 tpidm12 3821 . 2 {B, B, A} = {B, A}
3 prcom 3798 . 2 {B, A} = {A, B}
41, 2, 33eqtri 2377 1 {A, B, B} = {A, B}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642  {cpr 3738  {ctp 3739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742  df-tp 3743 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator