NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unabs GIF version

Theorem unabs 3486
Description: Absorption law for union. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
unabs (A ∪ (AB)) = A

Proof of Theorem unabs
StepHypRef Expression
1 inss1 3476 . 2 (AB) A
2 ssequn2 3437 . 2 ((AB) A ↔ (A ∪ (AB)) = A)
31, 2mpbi 199 1 (A ∪ (AB)) = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cun 3208  cin 3209   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator