New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssequn2 GIF version

Theorem ssequn2 3436
 Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2 (A B ↔ (BA) = B)

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3433 . 2 (A B ↔ (AB) = B)
2 uncom 3408 . . 3 (AB) = (BA)
32eqeq1i 2360 . 2 ((AB) = B ↔ (BA) = B)
41, 3bitri 240 1 (A B ↔ (BA) = B)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 176   = wceq 1642   ∪ cun 3207   ⊆ wss 3257 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-ss 3259 This theorem is referenced by:  unabs  3485  nnsucelrlem3  4426  nnsucelrlem4  4427  nnsucelr  4428  ssfin  4470  sfinltfin  4535
 Copyright terms: Public domain W3C validator