NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unss12 GIF version

Theorem unss12 3436
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12 ((A B C D) → (AC) (BD))

Proof of Theorem unss12
StepHypRef Expression
1 unss1 3433 . 2 (A B → (AC) (BC))
2 unss2 3435 . 2 (C D → (BC) (BD))
31, 2sylan9ss 3286 1 ((A B C D) → (AC) (BD))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  cun 3208   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260
This theorem is referenced by:  fun  5237
  Copyright terms: Public domain W3C validator