![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fun | GIF version |
Description: The union of two functions with disjoint domains. (Contributed by set.mm contributors, 22-Sep-2004.) |
Ref | Expression |
---|---|
fun | ⊢ (((F:A–→C ∧ G:B–→D) ∧ (A ∩ B) = ∅) → (F ∪ G):(A ∪ B)–→(C ∪ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnun 5189 | . . . . 5 ⊢ (((F Fn A ∧ G Fn B) ∧ (A ∩ B) = ∅) → (F ∪ G) Fn (A ∪ B)) | |
2 | 1 | expcom 424 | . . . 4 ⊢ ((A ∩ B) = ∅ → ((F Fn A ∧ G Fn B) → (F ∪ G) Fn (A ∪ B))) |
3 | rnun 5036 | . . . . . 6 ⊢ ran (F ∪ G) = (ran F ∪ ran G) | |
4 | unss12 3435 | . . . . . 6 ⊢ ((ran F ⊆ C ∧ ran G ⊆ D) → (ran F ∪ ran G) ⊆ (C ∪ D)) | |
5 | 3, 4 | syl5eqss 3315 | . . . . 5 ⊢ ((ran F ⊆ C ∧ ran G ⊆ D) → ran (F ∪ G) ⊆ (C ∪ D)) |
6 | 5 | a1i 10 | . . . 4 ⊢ ((A ∩ B) = ∅ → ((ran F ⊆ C ∧ ran G ⊆ D) → ran (F ∪ G) ⊆ (C ∪ D))) |
7 | 2, 6 | anim12d 546 | . . 3 ⊢ ((A ∩ B) = ∅ → (((F Fn A ∧ G Fn B) ∧ (ran F ⊆ C ∧ ran G ⊆ D)) → ((F ∪ G) Fn (A ∪ B) ∧ ran (F ∪ G) ⊆ (C ∪ D)))) |
8 | df-f 4791 | . . . . 5 ⊢ (F:A–→C ↔ (F Fn A ∧ ran F ⊆ C)) | |
9 | df-f 4791 | . . . . 5 ⊢ (G:B–→D ↔ (G Fn B ∧ ran G ⊆ D)) | |
10 | 8, 9 | anbi12i 678 | . . . 4 ⊢ ((F:A–→C ∧ G:B–→D) ↔ ((F Fn A ∧ ran F ⊆ C) ∧ (G Fn B ∧ ran G ⊆ D))) |
11 | an4 797 | . . . 4 ⊢ (((F Fn A ∧ ran F ⊆ C) ∧ (G Fn B ∧ ran G ⊆ D)) ↔ ((F Fn A ∧ G Fn B) ∧ (ran F ⊆ C ∧ ran G ⊆ D))) | |
12 | 10, 11 | bitri 240 | . . 3 ⊢ ((F:A–→C ∧ G:B–→D) ↔ ((F Fn A ∧ G Fn B) ∧ (ran F ⊆ C ∧ ran G ⊆ D))) |
13 | df-f 4791 | . . 3 ⊢ ((F ∪ G):(A ∪ B)–→(C ∪ D) ↔ ((F ∪ G) Fn (A ∪ B) ∧ ran (F ∪ G) ⊆ (C ∪ D))) | |
14 | 7, 12, 13 | 3imtr4g 261 | . 2 ⊢ ((A ∩ B) = ∅ → ((F:A–→C ∧ G:B–→D) → (F ∪ G):(A ∪ B)–→(C ∪ D))) |
15 | 14 | impcom 419 | 1 ⊢ (((F:A–→C ∧ G:B–→D) ∧ (A ∩ B) = ∅) → (F ∪ G):(A ∪ B)–→(C ∪ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∪ cun 3207 ∩ cin 3208 ⊆ wss 3257 ∅c0 3550 ran crn 4773 Fn wfn 4776 –→wf 4777 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-f 4791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |