New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan9ss | GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sylan9ss.1 | ⊢ (φ → A ⊆ B) |
sylan9ss.2 | ⊢ (ψ → B ⊆ C) |
Ref | Expression |
---|---|
sylan9ss | ⊢ ((φ ∧ ψ) → A ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ss.1 | . 2 ⊢ (φ → A ⊆ B) | |
2 | sylan9ss.2 | . 2 ⊢ (ψ → B ⊆ C) | |
3 | sstr 3280 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ C) → A ⊆ C) | |
4 | 1, 2, 3 | syl2an 463 | 1 ⊢ ((φ ∧ ψ) → A ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: sylan9ssr 3286 psstr 3373 unss12 3435 ss2in 3482 funssxp 5233 |
Copyright terms: Public domain | W3C validator |