New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unss1 | GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unss1 | ⊢ (A ⊆ B → (A ∪ C) ⊆ (B ∪ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3268 | . . . 4 ⊢ (A ⊆ B → (x ∈ A → x ∈ B)) | |
2 | 1 | orim1d 812 | . . 3 ⊢ (A ⊆ B → ((x ∈ A ∨ x ∈ C) → (x ∈ B ∨ x ∈ C))) |
3 | elun 3221 | . . 3 ⊢ (x ∈ (A ∪ C) ↔ (x ∈ A ∨ x ∈ C)) | |
4 | elun 3221 | . . 3 ⊢ (x ∈ (B ∪ C) ↔ (x ∈ B ∨ x ∈ C)) | |
5 | 2, 3, 4 | 3imtr4g 261 | . 2 ⊢ (A ⊆ B → (x ∈ (A ∪ C) → x ∈ (B ∪ C))) |
6 | 5 | ssrdv 3279 | 1 ⊢ (A ⊆ B → (A ∪ C) ⊆ (B ∪ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∈ wcel 1710 ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
This theorem is referenced by: unss2 3435 unss12 3436 pwadjoin 4120 |
Copyright terms: Public domain | W3C validator |