New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vss | GIF version |
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
vss | ⊢ (V ⊆ A ↔ A = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3292 | . . 3 ⊢ A ⊆ V | |
2 | 1 | biantrur 492 | . 2 ⊢ (V ⊆ A ↔ (A ⊆ V ∧ V ⊆ A)) |
3 | eqss 3288 | . 2 ⊢ (A = V ↔ (A ⊆ V ∧ V ⊆ A)) | |
4 | 2, 3 | bitr4i 243 | 1 ⊢ (V ⊆ A ↔ A = V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 Vcvv 2860 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: vdif0 3611 dmen 6042 |
Copyright terms: Public domain | W3C validator |