New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ A ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (x ∈ A → x ∈ V) | |
2 | 1 | ssriv 3278 | 1 ⊢ A ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 2860 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: inv1 3578 unv 3579 vss 3588 pssv 3591 disj2 3599 pwv 3887 unissint 3951 vfinnc 4472 vfinspsslem1 4551 dmv 4921 dmresi 5005 resid 5006 ssrnres 5060 dffn2 5225 f1funfun 5264 swapres 5513 pw1fnf1o 5856 fvfullfunlem3 5864 dfnnc3 5886 fundmen 6044 xpassen 6058 lecncvg 6200 |
Copyright terms: Public domain | W3C validator |