New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssv | GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ A ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . 2 ⊢ (x ∈ A → x ∈ V) | |
2 | 1 | ssriv 3277 | 1 ⊢ A ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 2859 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: inv1 3577 unv 3578 vss 3587 pssv 3590 disj2 3598 pwv 3886 unissint 3950 vfinnc 4471 vfinspsslem1 4550 dmv 4920 dmresi 5004 resid 5005 ssrnres 5059 dffn2 5224 f1funfun 5263 swapres 5512 pw1fnf1o 5855 fvfullfunlem3 5863 dfnnc3 5885 fundmen 6043 xpassen 6057 lecncvg 6199 |
Copyright terms: Public domain | W3C validator |