| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > un00 | GIF version | ||
| Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| un00 | ⊢ ((A = ∅ ∧ B = ∅) ↔ (A ∪ B) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq12 3414 | . . 3 ⊢ ((A = ∅ ∧ B = ∅) → (A ∪ B) = (∅ ∪ ∅)) | |
| 2 | un0 3576 | . . 3 ⊢ (∅ ∪ ∅) = ∅ | |
| 3 | 1, 2 | syl6eq 2401 | . 2 ⊢ ((A = ∅ ∧ B = ∅) → (A ∪ B) = ∅) |
| 4 | ssun1 3427 | . . . . 5 ⊢ A ⊆ (A ∪ B) | |
| 5 | sseq2 3294 | . . . . 5 ⊢ ((A ∪ B) = ∅ → (A ⊆ (A ∪ B) ↔ A ⊆ ∅)) | |
| 6 | 4, 5 | mpbii 202 | . . . 4 ⊢ ((A ∪ B) = ∅ → A ⊆ ∅) |
| 7 | ss0b 3581 | . . . 4 ⊢ (A ⊆ ∅ ↔ A = ∅) | |
| 8 | 6, 7 | sylib 188 | . . 3 ⊢ ((A ∪ B) = ∅ → A = ∅) |
| 9 | ssun2 3428 | . . . . 5 ⊢ B ⊆ (A ∪ B) | |
| 10 | sseq2 3294 | . . . . 5 ⊢ ((A ∪ B) = ∅ → (B ⊆ (A ∪ B) ↔ B ⊆ ∅)) | |
| 11 | 9, 10 | mpbii 202 | . . . 4 ⊢ ((A ∪ B) = ∅ → B ⊆ ∅) |
| 12 | ss0b 3581 | . . . 4 ⊢ (B ⊆ ∅ ↔ B = ∅) | |
| 13 | 11, 12 | sylib 188 | . . 3 ⊢ ((A ∪ B) = ∅ → B = ∅) |
| 14 | 8, 13 | jca 518 | . 2 ⊢ ((A ∪ B) = ∅ → (A = ∅ ∧ B = ∅)) |
| 15 | 3, 14 | impbii 180 | 1 ⊢ ((A = ∅ ∧ B = ∅) ↔ (A ∪ B) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∪ cun 3208 ⊆ wss 3258 ∅c0 3551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 |
| This theorem is referenced by: undisj1 3603 undisj2 3604 0nelsuc 4401 addcass 4416 |
| Copyright terms: Public domain | W3C validator |