New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocl2gf | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2gf.1 | ⊢ ℲxA |
vtocl2gf.2 | ⊢ ℲyA |
vtocl2gf.3 | ⊢ ℲyB |
vtocl2gf.4 | ⊢ Ⅎxψ |
vtocl2gf.5 | ⊢ Ⅎyχ |
vtocl2gf.6 | ⊢ (x = A → (φ ↔ ψ)) |
vtocl2gf.7 | ⊢ (y = B → (ψ ↔ χ)) |
vtocl2gf.8 | ⊢ φ |
Ref | Expression |
---|---|
vtocl2gf | ⊢ ((A ∈ V ∧ B ∈ W) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ V → A ∈ V) | |
2 | vtocl2gf.3 | . . 3 ⊢ ℲyB | |
3 | vtocl2gf.2 | . . . . 5 ⊢ ℲyA | |
4 | 3 | nfel1 2500 | . . . 4 ⊢ Ⅎy A ∈ V |
5 | vtocl2gf.5 | . . . 4 ⊢ Ⅎyχ | |
6 | 4, 5 | nfim 1813 | . . 3 ⊢ Ⅎy(A ∈ V → χ) |
7 | vtocl2gf.7 | . . . 4 ⊢ (y = B → (ψ ↔ χ)) | |
8 | 7 | imbi2d 307 | . . 3 ⊢ (y = B → ((A ∈ V → ψ) ↔ (A ∈ V → χ))) |
9 | vtocl2gf.1 | . . . 4 ⊢ ℲxA | |
10 | vtocl2gf.4 | . . . 4 ⊢ Ⅎxψ | |
11 | vtocl2gf.6 | . . . 4 ⊢ (x = A → (φ ↔ ψ)) | |
12 | vtocl2gf.8 | . . . 4 ⊢ φ | |
13 | 9, 10, 11, 12 | vtoclgf 2914 | . . 3 ⊢ (A ∈ V → ψ) |
14 | 2, 6, 8, 13 | vtoclgf 2914 | . 2 ⊢ (B ∈ W → (A ∈ V → χ)) |
15 | 1, 14 | mpan9 455 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: vtocl3gf 2918 vtocl2g 2919 vtocl2gaf 2922 |
Copyright terms: Public domain | W3C validator |