| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > vtoclgf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgf.1 | ⊢ ℲxA |
| vtoclgf.2 | ⊢ Ⅎxψ |
| vtoclgf.3 | ⊢ (x = A → (φ ↔ ψ)) |
| vtoclgf.4 | ⊢ φ |
| Ref | Expression |
|---|---|
| vtoclgf | ⊢ (A ∈ V → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2868 | . 2 ⊢ (A ∈ V → A ∈ V) | |
| 2 | vtoclgf.1 | . . . 4 ⊢ ℲxA | |
| 3 | 2 | issetf 2865 | . . 3 ⊢ (A ∈ V ↔ ∃x x = A) |
| 4 | vtoclgf.2 | . . . 4 ⊢ Ⅎxψ | |
| 5 | vtoclgf.4 | . . . . 5 ⊢ φ | |
| 6 | vtoclgf.3 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
| 7 | 5, 6 | mpbii 202 | . . . 4 ⊢ (x = A → ψ) |
| 8 | 4, 7 | exlimi 1803 | . . 3 ⊢ (∃x x = A → ψ) |
| 9 | 3, 8 | sylbi 187 | . 2 ⊢ (A ∈ V → ψ) |
| 10 | 1, 9 | syl 15 | 1 ⊢ (A ∈ V → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
| This theorem is referenced by: vtoclg 2915 vtocl2gf 2917 vtocl3gf 2918 vtoclgaf 2920 ceqsexg 2971 elabgf 2984 mob 3019 opeliunxp2 4823 |
| Copyright terms: Public domain | W3C validator |