NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  vtocl2g GIF version

Theorem vtocl2g 2919
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
Hypotheses
Ref Expression
vtocl2g.1 (x = A → (φψ))
vtocl2g.2 (y = B → (ψχ))
vtocl2g.3 φ
Assertion
Ref Expression
vtocl2g ((A V B W) → χ)
Distinct variable groups:   x,A   y,A   y,B   ψ,x   χ,y
Allowed substitution hints:   φ(x,y)   ψ(y)   χ(x)   B(x)   V(x,y)   W(x,y)

Proof of Theorem vtocl2g
StepHypRef Expression
1 nfcv 2490 . 2 xA
2 nfcv 2490 . 2 yA
3 nfcv 2490 . 2 yB
4 nfv 1619 . 2 xψ
5 nfv 1619 . 2 yχ
6 vtocl2g.1 . 2 (x = A → (φψ))
7 vtocl2g.2 . 2 (y = B → (ψχ))
8 vtocl2g.3 . 2 φ
91, 2, 3, 4, 5, 6, 7, 8vtocl2gf 2917 1 ((A V B W) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by:  ifexg  3722  uniprg  3907  intprg  3961  ninexg  4098  preqr2g  4127  preaddccan2lem1  4455  spfinsfincl  4540  opelopabsb  4698  br1stg  4731  vtoclr  4817  fnunsn  5191  f1osng  5324  fsng  5434  fvsng  5447  trtxp  5782  oqelins4  5795  qrpprod  5837  clos1exg  5878  clos1conn  5880  clos1basesucg  5885  mapex  6007  xpsneng  6051  xpcomeng  6054  enpw1  6063  enmap2  6069  enpw  6088  addccan2nclem2  6265
  Copyright terms: Public domain W3C validator