New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtocl3gf | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtocl3gf.a | ⊢ ℲxA |
vtocl3gf.b | ⊢ ℲyA |
vtocl3gf.c | ⊢ ℲzA |
vtocl3gf.d | ⊢ ℲyB |
vtocl3gf.e | ⊢ ℲzB |
vtocl3gf.f | ⊢ ℲzC |
vtocl3gf.1 | ⊢ Ⅎxψ |
vtocl3gf.2 | ⊢ Ⅎyχ |
vtocl3gf.3 | ⊢ Ⅎzθ |
vtocl3gf.4 | ⊢ (x = A → (φ ↔ ψ)) |
vtocl3gf.5 | ⊢ (y = B → (ψ ↔ χ)) |
vtocl3gf.6 | ⊢ (z = C → (χ ↔ θ)) |
vtocl3gf.7 | ⊢ φ |
Ref | Expression |
---|---|
vtocl3gf | ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . . 3 ⊢ (A ∈ V → A ∈ V) | |
2 | vtocl3gf.d | . . . 4 ⊢ ℲyB | |
3 | vtocl3gf.e | . . . 4 ⊢ ℲzB | |
4 | vtocl3gf.f | . . . 4 ⊢ ℲzC | |
5 | vtocl3gf.b | . . . . . 6 ⊢ ℲyA | |
6 | 5 | nfel1 2500 | . . . . 5 ⊢ Ⅎy A ∈ V |
7 | vtocl3gf.2 | . . . . 5 ⊢ Ⅎyχ | |
8 | 6, 7 | nfim 1813 | . . . 4 ⊢ Ⅎy(A ∈ V → χ) |
9 | vtocl3gf.c | . . . . . 6 ⊢ ℲzA | |
10 | 9 | nfel1 2500 | . . . . 5 ⊢ Ⅎz A ∈ V |
11 | vtocl3gf.3 | . . . . 5 ⊢ Ⅎzθ | |
12 | 10, 11 | nfim 1813 | . . . 4 ⊢ Ⅎz(A ∈ V → θ) |
13 | vtocl3gf.5 | . . . . 5 ⊢ (y = B → (ψ ↔ χ)) | |
14 | 13 | imbi2d 307 | . . . 4 ⊢ (y = B → ((A ∈ V → ψ) ↔ (A ∈ V → χ))) |
15 | vtocl3gf.6 | . . . . 5 ⊢ (z = C → (χ ↔ θ)) | |
16 | 15 | imbi2d 307 | . . . 4 ⊢ (z = C → ((A ∈ V → χ) ↔ (A ∈ V → θ))) |
17 | vtocl3gf.a | . . . . 5 ⊢ ℲxA | |
18 | vtocl3gf.1 | . . . . 5 ⊢ Ⅎxψ | |
19 | vtocl3gf.4 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
20 | vtocl3gf.7 | . . . . 5 ⊢ φ | |
21 | 17, 18, 19, 20 | vtoclgf 2914 | . . . 4 ⊢ (A ∈ V → ψ) |
22 | 2, 3, 4, 8, 12, 14, 16, 21 | vtocl2gf 2917 | . . 3 ⊢ ((B ∈ W ∧ C ∈ X) → (A ∈ V → θ)) |
23 | 1, 22 | mpan9 455 | . 2 ⊢ ((A ∈ V ∧ (B ∈ W ∧ C ∈ X)) → θ) |
24 | 23 | 3impb 1147 | 1 ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: vtocl3gaf 2924 |
Copyright terms: Public domain | W3C validator |