Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > an0r | GIF version |
Description: Conjunction with 0. (Contributed by NM, 26-Nov-1997.) |
Ref | Expression |
---|---|
an0r | (0 ∩ a) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 | . 2 (0 ∩ a) = (a ∩ 0) | |
2 | an0 108 | . 2 (a ∩ 0) = 0 | |
3 | 1, 2 | ax-r2 36 | 1 (0 ∩ a) = 0 |
Colors of variables: term |
Syntax hints: = wb 1 ∩ wa 7 0wf 9 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: ud3lem1a 566 ud3lem3b 573 ud5lem1b 587 ud5lem3a 591 ud5lem3b 592 bi3 839 bi4 840 mlaconj4 844 comanblem2 871 marsdenlem3 882 mhcor1 888 govar 896 lem3.3.7i3e1 1066 |
Copyright terms: Public domain | W3C validator |