Proof of Theorem oadistd
Step | Hyp | Ref
| Expression |
1 | | oadistd.2 |
. . . . . . . . . 10
e ≤ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))) |
2 | | oadistd.3 |
. . . . . . . . . 10
f ≤ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))) |
3 | 1, 2 | le2or 168 |
. . . . . . . . 9
(e ∪ f) ≤ (((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c))) ∪ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c)))) |
4 | | oridm 110 |
. . . . . . . . 9
(((b ∪ c) →0 ((a →2 b) ∩ (a
→2 c))) ∪ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c)))) = ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c))) |
5 | 3, 4 | lbtr 139 |
. . . . . . . 8
(e ∪ f) ≤ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c))) |
6 | 5 | lelan 167 |
. . . . . . 7
(d ∩ (e ∪ f)) ≤
(d ∩ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c)))) |
7 | 6 | df2le2 136 |
. . . . . 6
((d ∩ (e ∪ f))
∩ (d ∩ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))))) = (d
∩ (e ∪ f)) |
8 | 7 | ax-r1 35 |
. . . . 5
(d ∩ (e ∪ f)) =
((d ∩ (e ∪ f))
∩ (d ∩ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))))) |
9 | | df-i0 43 |
. . . . . . . 8
((b ∪ c) →0 ((a →2 b) ∩ (a
→2 c))) = ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
10 | 9 | lan 77 |
. . . . . . 7
(d ∩ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c)))) = (d ∩
((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) |
11 | | oadistd.1 |
. . . . . . . 8
d ≤ (a →2 b) |
12 | | leo 158 |
. . . . . . . . 9
(b ∪ c)⊥ ≤ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) |
13 | 9 | ax-r1 35 |
. . . . . . . . 9
((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c))) = ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))) |
14 | 12, 13 | lbtr 139 |
. . . . . . . 8
(b ∪ c)⊥ ≤ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))) |
15 | 11, 14 | oagen1b 1015 |
. . . . . . 7
(d ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) = (d ∩ (a
→2 c)) |
16 | 10, 15 | ax-r2 36 |
. . . . . 6
(d ∩ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c)))) = (d ∩
(a →2 c)) |
17 | 16 | lan 77 |
. . . . 5
((d ∩ (e ∪ f))
∩ (d ∩ ((b ∪ c)
→0 ((a →2
b) ∩ (a →2 c))))) = ((d
∩ (e ∪ f)) ∩ (d
∩ (a →2 c))) |
18 | 8, 17 | ax-r2 36 |
. . . 4
(d ∩ (e ∪ f)) =
((d ∩ (e ∪ f))
∩ (d ∩ (a →2 c))) |
19 | | lear 161 |
. . . . 5
((d ∩ (e ∪ f))
∩ (d ∩ (a →2 c))) ≤ (d
∩ (a →2 c)) |
20 | | oadistd.4 |
. . . . . . . . 9
(d ∩ (a →2 c)) ≤ f |
21 | 20 | df2le2 136 |
. . . . . . . 8
((d ∩ (a →2 c)) ∩ f) =
(d ∩ (a →2 c)) |
22 | 21 | ax-r1 35 |
. . . . . . 7
(d ∩ (a →2 c)) = ((d ∩
(a →2 c)) ∩ f) |
23 | | an32 83 |
. . . . . . 7
((d ∩ (a →2 c)) ∩ f) =
((d ∩ f) ∩ (a
→2 c)) |
24 | 22, 23 | ax-r2 36 |
. . . . . 6
(d ∩ (a →2 c)) = ((d ∩
f) ∩ (a →2 c)) |
25 | | lea 160 |
. . . . . 6
((d ∩ f) ∩ (a
→2 c)) ≤ (d ∩ f) |
26 | 24, 25 | bltr 138 |
. . . . 5
(d ∩ (a →2 c)) ≤ (d
∩ f) |
27 | 19, 26 | letr 137 |
. . . 4
((d ∩ (e ∪ f))
∩ (d ∩ (a →2 c))) ≤ (d
∩ f) |
28 | 18, 27 | bltr 138 |
. . 3
(d ∩ (e ∪ f)) ≤
(d ∩ f) |
29 | | leor 159 |
. . 3
(d ∩ f) ≤ ((d
∩ e) ∪ (d ∩ f)) |
30 | 28, 29 | letr 137 |
. 2
(d ∩ (e ∪ f)) ≤
((d ∩ e) ∪ (d
∩ f)) |
31 | | ledi 174 |
. 2
((d ∩ e) ∪ (d
∩ f)) ≤ (d ∩ (e ∪
f)) |
32 | 30, 31 | lebi 145 |
1
(d ∩ (e ∪ f)) =
((d ∩ e) ∪ (d
∩ f)) |