QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  woml7 GIF version

Theorem woml7 437
Description: Variant of weakly orthomodular law. (Contributed by NM, 14-Nov-1998.)
Assertion
Ref Expression
woml7 (((a2 b) ∩ (b2 a)) ∪ (ab)) = 1

Proof of Theorem woml7
StepHypRef Expression
1 df-i2 45 . . . . . . . 8 (a2 b) = (b ∪ (ab ))
2 ax-a2 31 . . . . . . . 8 (b ∪ (ab )) = ((ab ) ∪ b)
31, 2ax-r2 36 . . . . . . 7 (a2 b) = ((ab ) ∪ b)
4 df-i2 45 . . . . . . . 8 (b2 a) = (a ∪ (ba ))
5 ax-a2 31 . . . . . . . 8 (a ∪ (ba )) = ((ba ) ∪ a)
6 ancom 74 . . . . . . . . 9 (ba ) = (ab )
76ax-r5 38 . . . . . . . 8 ((ba ) ∪ a) = ((ab ) ∪ a)
84, 5, 73tr 65 . . . . . . 7 (b2 a) = ((ab ) ∪ a)
93, 82an 79 . . . . . 6 ((a2 b) ∩ (b2 a)) = (((ab ) ∪ b) ∩ ((ab ) ∪ a))
10 ancom 74 . . . . . 6 (((ab ) ∪ b) ∩ ((ab ) ∪ a)) = (((ab ) ∪ a) ∩ ((ab ) ∪ b))
119, 10ax-r2 36 . . . . 5 ((a2 b) ∩ (b2 a)) = (((ab ) ∪ a) ∩ ((ab ) ∪ b))
1211ax-r4 37 . . . 4 ((a2 b) ∩ (b2 a)) = (((ab ) ∪ a) ∩ ((ab ) ∪ b))
13 id 59 . . . 4 (((ab ) ∪ a) ∩ ((ab ) ∪ b)) = (((ab ) ∪ a) ∩ ((ab ) ∪ b))
1412, 13ax-r2 36 . . 3 ((a2 b) ∩ (b2 a)) = (((ab ) ∪ a) ∩ ((ab ) ∪ b))
15 dfb 94 . . 3 (ab) = ((ab) ∪ (ab ))
1614, 152or 72 . 2 (((a2 b) ∩ (b2 a)) ∪ (ab)) = ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab )))
17 1b 117 . . 3 (1 ≡ ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab )))) = ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab )))
1817ax-r1 35 . 2 ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab ))) = (1 ≡ ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab ))))
19 df-t 41 . . . . 5 1 = (((ab) ∪ (ab )) ∪ ((ab) ∪ (ab )) )
20 ax-a2 31 . . . . 5 (((ab) ∪ (ab )) ∪ ((ab) ∪ (ab )) ) = (((ab) ∪ (ab )) ∪ ((ab) ∪ (ab )))
2119, 20ax-r2 36 . . . 4 1 = (((ab) ∪ (ab )) ∪ ((ab) ∪ (ab )))
2221bi1 118 . . 3 (1 ≡ (((ab) ∪ (ab )) ∪ ((ab) ∪ (ab )))) = 1
23 wa2 192 . . . . . 6 (((ab) ∪ (ab )) ≡ ((ab ) ∪ (ab))) = 1
24 wcoman1 413 . . . . . . . . 9 C ((ab ), a ) = 1
2524wcomcom3 416 . . . . . . . 8 C ((ab ) , a ) = 1
2625wcomcom5 420 . . . . . . 7 C ((ab ), a) = 1
27 ancom 74 . . . . . . . . . . 11 (ab ) = (ba )
2827bi1 118 . . . . . . . . . 10 ((ab ) ≡ (ba )) = 1
29 wcoman1 413 . . . . . . . . . 10 C ((ba ), b ) = 1
3028, 29wbctr 410 . . . . . . . . 9 C ((ab ), b ) = 1
3130wcomcom3 416 . . . . . . . 8 C ((ab ) , b ) = 1
3231wcomcom5 420 . . . . . . 7 C ((ab ), b) = 1
3326, 32wfh3 425 . . . . . 6 (((ab ) ∪ (ab)) ≡ (((ab ) ∪ a) ∩ ((ab ) ∪ b))) = 1
3423, 33wr2 371 . . . . 5 (((ab) ∪ (ab )) ≡ (((ab ) ∪ a) ∩ ((ab ) ∪ b))) = 1
3534wr4 199 . . . 4 (((ab) ∪ (ab )) ≡ (((ab ) ∪ a) ∩ ((ab ) ∪ b)) ) = 1
3635wr5-2v 366 . . 3 ((((ab) ∪ (ab )) ∪ ((ab) ∪ (ab ))) ≡ ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab )))) = 1
3722, 36wr2 371 . 2 (1 ≡ ((((ab ) ∪ a) ∩ ((ab ) ∪ b)) ∪ ((ab) ∪ (ab )))) = 1
3816, 18, 373tr 65 1 (((a2 b) ∩ (b2 a)) ∪ (ab)) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  wo 6  wa 7  1wt 8  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator