Proof of Theorem woml7
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. . . . . . . 8
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
2 | | ax-a2 31 |
. . . . . . . 8
(b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
3 | 1, 2 | ax-r2 36 |
. . . . . . 7
(a →2 b) = ((a⊥ ∩ b⊥ ) ∪ b) |
4 | | df-i2 45 |
. . . . . . . 8
(b →2 a) = (a ∪
(b⊥ ∩ a⊥ )) |
5 | | ax-a2 31 |
. . . . . . . 8
(a ∪ (b⊥ ∩ a⊥ )) = ((b⊥ ∩ a⊥ ) ∪ a) |
6 | | ancom 74 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
7 | 6 | ax-r5 38 |
. . . . . . . 8
((b⊥ ∩ a⊥ ) ∪ a) = ((a⊥ ∩ b⊥ ) ∪ a) |
8 | 4, 5, 7 | 3tr 65 |
. . . . . . 7
(b →2 a) = ((a⊥ ∩ b⊥ ) ∪ a) |
9 | 3, 8 | 2an 79 |
. . . . . 6
((a →2 b) ∩ (b
→2 a)) = (((a⊥ ∩ b⊥ ) ∪ b) ∩ ((a⊥ ∩ b⊥ ) ∪ a)) |
10 | | ancom 74 |
. . . . . 6
(((a⊥ ∩
b⊥ ) ∪ b) ∩ ((a⊥ ∩ b⊥ ) ∪ a)) = (((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b)) |
11 | 9, 10 | ax-r2 36 |
. . . . 5
((a →2 b) ∩ (b
→2 a)) = (((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b)) |
12 | 11 | ax-r4 37 |
. . . 4
((a →2 b) ∩ (b
→2 a))⊥ =
(((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ |
13 | | id 59 |
. . . 4
(((a⊥ ∩
b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ = (((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ |
14 | 12, 13 | ax-r2 36 |
. . 3
((a →2 b) ∩ (b
→2 a))⊥ =
(((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ |
15 | | dfb 94 |
. . 3
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
16 | 14, 15 | 2or 72 |
. 2
(((a →2 b) ∩ (b
→2 a))⊥
∪ (a ≡ b)) = ((((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
17 | | 1b 117 |
. . 3
(1 ≡ ((((a⊥
∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ )))) = ((((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) |
18 | 17 | ax-r1 35 |
. 2
((((a⊥ ∩
b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))) = (1 ≡ ((((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ )))) |
19 | | df-t 41 |
. . . . 5
1 = (((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥
) |
20 | | ax-a2 31 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ ))⊥ ) =
(((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
21 | 19, 20 | ax-r2 36 |
. . . 4
1 = (((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
22 | 21 | bi1 118 |
. . 3
(1 ≡ (((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b⊥ )))) = 1 |
23 | | wa2 192 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≡ ((a⊥ ∩ b⊥ ) ∪ (a ∩ b))) =
1 |
24 | | wcoman1 413 |
. . . . . . . . 9
C ((a⊥
∩ b⊥ ), a⊥ ) = 1 |
25 | 24 | wcomcom3 416 |
. . . . . . . 8
C ((a⊥
∩ b⊥
)⊥ , a⊥ )
= 1 |
26 | 25 | wcomcom5 420 |
. . . . . . 7
C ((a⊥
∩ b⊥ ), a) = 1 |
27 | | ancom 74 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (b⊥ ∩ a⊥ ) |
28 | 27 | bi1 118 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ≡ (b⊥ ∩ a⊥ )) = 1 |
29 | | wcoman1 413 |
. . . . . . . . . 10
C ((b⊥
∩ a⊥ ), b⊥ ) = 1 |
30 | 28, 29 | wbctr 410 |
. . . . . . . . 9
C ((a⊥
∩ b⊥ ), b⊥ ) = 1 |
31 | 30 | wcomcom3 416 |
. . . . . . . 8
C ((a⊥
∩ b⊥
)⊥ , b⊥ )
= 1 |
32 | 31 | wcomcom5 420 |
. . . . . . 7
C ((a⊥
∩ b⊥ ), b) = 1 |
33 | 26, 32 | wfh3 425 |
. . . . . 6
(((a⊥ ∩
b⊥ ) ∪ (a ∩ b))
≡ (((a⊥ ∩
b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))) = 1 |
34 | 23, 33 | wr2 371 |
. . . . 5
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≡ (((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))) = 1 |
35 | 34 | wr4 199 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ≡
(((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ) = 1 |
36 | 35 | wr5-2v 366 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b⊥ ))⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b⊥ ))) ≡ ((((a⊥ ∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ )))) = 1 |
37 | 22, 36 | wr2 371 |
. 2
(1 ≡ ((((a⊥
∩ b⊥ ) ∪ a) ∩ ((a⊥ ∩ b⊥ ) ∪ b))⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b⊥ )))) = 1 |
38 | 16, 18, 37 | 3tr 65 |
1
(((a →2 b) ∩ (b
→2 a))⊥
∪ (a ≡ b)) = 1 |