Proof of Theorem e2astlem1
| Step | Hyp | Ref
| Expression |
| 1 | | anandir 115 |
. 2
(((a ∪ b) ∩ (c
∪ d)) ∩ ((a ∪ c) ∪
r)) = (((a ∪ b) ∩
((a ∪ c) ∪ r))
∩ ((c ∪ d) ∩ ((a
∪ c) ∪ r))) |
| 2 | | leo 158 |
. . . . . . 7
a ≤ (a ∪ c) |
| 3 | 2 | ler 149 |
. . . . . 6
a ≤ ((a ∪ c) ∪
r) |
| 4 | 3 | lecom 180 |
. . . . 5
a C ((a ∪ c) ∪
r) |
| 5 | | e2ast.1 |
. . . . . . 7
a ≤ b⊥ |
| 6 | 5 | lecom 180 |
. . . . . 6
a C b⊥ |
| 7 | 6 | comcom7 460 |
. . . . 5
a C b |
| 8 | 4, 7 | fh2r 474 |
. . . 4
((a ∪ b) ∩ ((a
∪ c) ∪ r)) = ((a ∩
((a ∪ c) ∪ r))
∪ (b ∩ ((a ∪ c) ∪
r))) |
| 9 | 3 | df2le2 136 |
. . . . 5
(a ∩ ((a ∪ c) ∪
r)) = a |
| 10 | | ax-a3 32 |
. . . . . . 7
((a ∪ c) ∪ r) =
(a ∪ (c ∪ r)) |
| 11 | 10 | lan 77 |
. . . . . 6
(b ∩ ((a ∪ c) ∪
r)) = (b ∩ (a ∪
(c ∪ r))) |
| 12 | | e2ast.4 |
. . . . . . . . . . 11
a ≤ c⊥ |
| 13 | 12 | lecom 180 |
. . . . . . . . . 10
a C c⊥ |
| 14 | 13 | comcom7 460 |
. . . . . . . . 9
a C c |
| 15 | | e2ast.3 |
. . . . . . . . . . . 12
r ≤ a⊥ |
| 16 | 15 | lecom 180 |
. . . . . . . . . . 11
r C a⊥ |
| 17 | 16 | comcom7 460 |
. . . . . . . . . 10
r C a |
| 18 | 17 | comcom 453 |
. . . . . . . . 9
a C r |
| 19 | 14, 18 | com2or 483 |
. . . . . . . 8
a C (c ∪ r) |
| 20 | 7, 19 | fh2 470 |
. . . . . . 7
(b ∩ (a ∪ (c ∪
r))) = ((b ∩ a) ∪
(b ∩ (c ∪ r))) |
| 21 | 5 | lecon3 157 |
. . . . . . . . 9
b ≤ a⊥ |
| 22 | 21 | ortha 438 |
. . . . . . . 8
(b ∩ a) = 0 |
| 23 | 22 | ax-r5 38 |
. . . . . . 7
((b ∩ a) ∪ (b
∩ (c ∪ r))) = (0 ∪ (b ∩ (c ∪
r))) |
| 24 | 20, 23 | ax-r2 36 |
. . . . . 6
(b ∩ (a ∪ (c ∪
r))) = (0 ∪ (b ∩ (c ∪
r))) |
| 25 | | or0r 103 |
. . . . . 6
(0 ∪ (b ∩ (c ∪ r))) =
(b ∩ (c ∪ r)) |
| 26 | 11, 24, 25 | 3tr 65 |
. . . . 5
(b ∩ ((a ∪ c) ∪
r)) = (b ∩ (c ∪
r)) |
| 27 | 9, 26 | 2or 72 |
. . . 4
((a ∩ ((a ∪ c) ∪
r)) ∪ (b ∩ ((a
∪ c) ∪ r))) = (a ∪
(b ∩ (c ∪ r))) |
| 28 | 8, 27 | ax-r2 36 |
. . 3
((a ∪ b) ∩ ((a
∪ c) ∪ r)) = (a ∪
(b ∩ (c ∪ r))) |
| 29 | | leor 159 |
. . . . . . 7
c ≤ (a ∪ c) |
| 30 | 29 | ler 149 |
. . . . . 6
c ≤ ((a ∪ c) ∪
r) |
| 31 | 30 | lecom 180 |
. . . . 5
c C ((a ∪ c) ∪
r) |
| 32 | | e2ast.2 |
. . . . . . 7
c ≤ d⊥ |
| 33 | 32 | lecom 180 |
. . . . . 6
c C d⊥ |
| 34 | 33 | comcom7 460 |
. . . . 5
c C d |
| 35 | 31, 34 | fh2r 474 |
. . . 4
((c ∪ d) ∩ ((a
∪ c) ∪ r)) = ((c ∩
((a ∪ c) ∪ r))
∪ (d ∩ ((a ∪ c) ∪
r))) |
| 36 | 30 | df2le2 136 |
. . . . 5
(c ∩ ((a ∪ c) ∪
r)) = c |
| 37 | | or32 82 |
. . . . . . 7
((a ∪ c) ∪ r) =
((a ∪ r) ∪ c) |
| 38 | 37 | lan 77 |
. . . . . 6
(d ∩ ((a ∪ c) ∪
r)) = (d ∩ ((a
∪ r) ∪ c)) |
| 39 | 14 | comcom 453 |
. . . . . . . 8
c C a |
| 40 | | e2ast.5 |
. . . . . . . . . 10
c ≤ r⊥ |
| 41 | 40 | lecom 180 |
. . . . . . . . 9
c C r⊥ |
| 42 | 41 | comcom7 460 |
. . . . . . . 8
c C r |
| 43 | 39, 42 | com2or 483 |
. . . . . . 7
c C (a ∪ r) |
| 44 | 34, 43 | fh2c 477 |
. . . . . 6
(d ∩ ((a ∪ r) ∪
c)) = ((d ∩ (a ∪
r)) ∪ (d ∩ c)) |
| 45 | 32 | lecon3 157 |
. . . . . . . . 9
d ≤ c⊥ |
| 46 | 45 | ortha 438 |
. . . . . . . 8
(d ∩ c) = 0 |
| 47 | 46 | lor 70 |
. . . . . . 7
((d ∩ (a ∪ r))
∪ (d ∩ c)) = ((d ∩
(a ∪ r)) ∪ 0) |
| 48 | | or0 102 |
. . . . . . 7
((d ∩ (a ∪ r))
∪ 0) = (d ∩ (a ∪ r)) |
| 49 | 47, 48 | ax-r2 36 |
. . . . . 6
((d ∩ (a ∪ r))
∪ (d ∩ c)) = (d ∩
(a ∪ r)) |
| 50 | 38, 44, 49 | 3tr 65 |
. . . . 5
(d ∩ ((a ∪ c) ∪
r)) = (d ∩ (a ∪
r)) |
| 51 | 36, 50 | 2or 72 |
. . . 4
((c ∩ ((a ∪ c) ∪
r)) ∪ (d ∩ ((a
∪ c) ∪ r))) = (c ∪
(d ∩ (a ∪ r))) |
| 52 | 35, 51 | ax-r2 36 |
. . 3
((c ∪ d) ∩ ((a
∪ c) ∪ r)) = (c ∪
(d ∩ (a ∪ r))) |
| 53 | 28, 52 | 2an 79 |
. 2
(((a ∪ b) ∩ ((a
∪ c) ∪ r)) ∩ ((c
∪ d) ∩ ((a ∪ c) ∪
r))) = ((a ∪ (b ∩
(c ∪ r))) ∩ (c
∪ (d ∩ (a ∪ r)))) |
| 54 | 1, 53 | ax-r2 36 |
1
(((a ∪ b) ∩ (c
∪ d)) ∩ ((a ∪ c) ∪
r)) = ((a ∪ (b ∩
(c ∪ r))) ∩ (c
∪ (d ∩ (a ∪ r)))) |