Proof of Theorem u12lembi
Step | Hyp | Ref
| Expression |
1 | | u1lemc1 680 |
. . . . 5
a C (a →1 b) |
2 | 1 | comcom 453 |
. . . 4
(a →1 b) C a |
3 | | lear 161 |
. . . . . . 7
(b⊥ ∩ a⊥ ) ≤ a⊥ |
4 | | leo 158 |
. . . . . . . 8
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
5 | | df-i1 44 |
. . . . . . . . 9
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
6 | 5 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∪ (a ∩ b)) =
(a →1 b) |
7 | 4, 6 | lbtr 139 |
. . . . . . 7
a⊥ ≤ (a →1 b) |
8 | 3, 7 | letr 137 |
. . . . . 6
(b⊥ ∩ a⊥ ) ≤ (a →1 b) |
9 | 8 | lecom 180 |
. . . . 5
(b⊥ ∩ a⊥ ) C (a →1 b) |
10 | 9 | comcom 453 |
. . . 4
(a →1 b) C (b⊥ ∩ a⊥ ) |
11 | 2, 10 | fh1 469 |
. . 3
((a →1 b) ∩ (a
∪ (b⊥ ∩ a⊥ ))) = (((a →1 b) ∩ a)
∪ ((a →1 b) ∩ (b⊥ ∩ a⊥ ))) |
12 | | u1lemaa 600 |
. . . 4
((a →1 b) ∩ a) =
(a ∩ b) |
13 | | an12 81 |
. . . . 5
((a →1 b) ∩ (b⊥ ∩ a⊥ )) = (b⊥ ∩ ((a →1 b) ∩ a⊥ )) |
14 | | u1lemana 605 |
. . . . . 6
((a →1 b) ∩ a⊥ ) = a⊥ |
15 | 14 | lan 77 |
. . . . 5
(b⊥ ∩
((a →1 b) ∩ a⊥ )) = (b⊥ ∩ a⊥ ) |
16 | | ancom 74 |
. . . . 5
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
17 | 13, 15, 16 | 3tr 65 |
. . . 4
((a →1 b) ∩ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
18 | 12, 17 | 2or 72 |
. . 3
(((a →1 b) ∩ a)
∪ ((a →1 b) ∩ (b⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
19 | 11, 18 | ax-r2 36 |
. 2
((a →1 b) ∩ (a
∪ (b⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
20 | | df-i2 45 |
. . 3
(b →2 a) = (a ∪
(b⊥ ∩ a⊥ )) |
21 | 20 | lan 77 |
. 2
((a →1 b) ∩ (b
→2 a)) = ((a →1 b) ∩ (a
∪ (b⊥ ∩ a⊥ ))) |
22 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
23 | 19, 21, 22 | 3tr1 63 |
1
((a →1 b) ∩ (b
→2 a)) = (a ≡ b) |