Proof of Theorem ud2lem2
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. 2
((a ∪ (a⊥ ∩ b⊥ )) →2 a) = (a ∪
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) |
| 2 | | oran 87 |
. . . . . . 7
((a ∪ (a⊥ ∩ b⊥ )) ∪ a) = ((a ∪
(a⊥ ∩ b⊥ ))⊥ ∩
a⊥
)⊥ |
| 3 | 2 | con2 67 |
. . . . . 6
((a ∪ (a⊥ ∩ b⊥ )) ∪ a)⊥ = ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) |
| 4 | 3 | ax-r1 35 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) = ((a ∪ (a⊥ ∩ b⊥ )) ∪ a)⊥ |
| 5 | | oran 87 |
. . . . . . . . . . . . 13
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 6 | 5 | con2 67 |
. . . . . . . . . . . 12
(a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
| 7 | 6 | ax-r1 35 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 8 | 7 | lor 70 |
. . . . . . . . . 10
(a ∪ (a⊥ ∩ b⊥ )) = (a ∪ (a ∪
b)⊥ ) |
| 9 | | anor2 89 |
. . . . . . . . . . . 12
(a⊥ ∩ (a ∪ b)) =
(a ∪ (a ∪ b)⊥
)⊥ |
| 10 | 9 | ax-r1 35 |
. . . . . . . . . . 11
(a ∪ (a ∪ b)⊥ )⊥ = (a⊥ ∩ (a ∪ b)) |
| 11 | 10 | con3 68 |
. . . . . . . . . 10
(a ∪ (a ∪ b)⊥ ) = (a⊥ ∩ (a ∪ b))⊥ |
| 12 | 8, 11 | ax-r2 36 |
. . . . . . . . 9
(a ∪ (a⊥ ∩ b⊥ )) = (a⊥ ∩ (a ∪ b))⊥ |
| 13 | 12 | con2 67 |
. . . . . . . 8
(a ∪ (a⊥ ∩ b⊥ ))⊥ = (a⊥ ∩ (a ∪ b)) |
| 14 | 13 | ran 78 |
. . . . . . 7
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) = ((a⊥ ∩ (a ∪ b))
∩ a⊥
) |
| 15 | | an32 83 |
. . . . . . . 8
((a⊥ ∩
(a ∪ b)) ∩ a⊥ ) = ((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) |
| 16 | | anidm 111 |
. . . . . . . . 9
(a⊥ ∩ a⊥ ) = a⊥ |
| 17 | 16 | ran 78 |
. . . . . . . 8
((a⊥ ∩ a⊥ ) ∩ (a ∪ b)) =
(a⊥ ∩ (a ∪ b)) |
| 18 | 15, 17 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩
(a ∪ b)) ∩ a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 19 | 14, 18 | ax-r2 36 |
. . . . . 6
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 20 | 3, 19 | ax-r2 36 |
. . . . 5
((a ∪ (a⊥ ∩ b⊥ )) ∪ a)⊥ = (a⊥ ∩ (a ∪ b)) |
| 21 | 4, 20 | ax-r2 36 |
. . . 4
((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ ) = (a⊥ ∩ (a ∪ b)) |
| 22 | 21 | lor 70 |
. . 3
(a ∪ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) = (a ∪ (a⊥ ∩ (a ∪ b))) |
| 23 | | oml 445 |
. . 3
(a ∪ (a⊥ ∩ (a ∪ b))) =
(a ∪ b) |
| 24 | 22, 23 | ax-r2 36 |
. 2
(a ∪ ((a ∪ (a⊥ ∩ b⊥ ))⊥ ∩
a⊥ )) = (a ∪ b) |
| 25 | 1, 24 | ax-r2 36 |
1
((a ∪ (a⊥ ∩ b⊥ )) →2 a) = (a ∪
b) |