Proof of Theorem ud5lem2
| Step | Hyp | Ref
| Expression |
| 1 | | df-i5 48 |
. 2
((a ∪ b⊥ ) →5 a) = ((((a ∪
b⊥ ) ∩ a) ∪ ((a
∪ b⊥
)⊥ ∩ a)) ∪
((a ∪ b⊥ )⊥ ∩
a⊥ )) |
| 2 | | ax-a3 32 |
. . 3
((((a ∪ b⊥ ) ∩ a) ∪ ((a
∪ b⊥
)⊥ ∩ a)) ∪
((a ∪ b⊥ )⊥ ∩
a⊥ )) = (((a ∪ b⊥ ) ∩ a) ∪ (((a
∪ b⊥
)⊥ ∩ a) ∪
((a ∪ b⊥ )⊥ ∩
a⊥ ))) |
| 3 | | ancom 74 |
. . . . 5
((a ∪ b⊥ ) ∩ a) = (a ∩
(a ∪ b⊥ )) |
| 4 | | anabs 121 |
. . . . 5
(a ∩ (a ∪ b⊥ )) = a |
| 5 | 3, 4 | ax-r2 36 |
. . . 4
((a ∪ b⊥ ) ∩ a) = a |
| 6 | | ax-a2 31 |
. . . . 5
(((a ∪ b⊥ )⊥ ∩
a) ∪ ((a ∪ b⊥ )⊥ ∩
a⊥ )) = (((a ∪ b⊥ )⊥ ∩
a⊥ ) ∪ ((a ∪ b⊥ )⊥ ∩
a)) |
| 7 | | anor2 89 |
. . . . . . . . . 10
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
| 8 | 7 | ax-r1 35 |
. . . . . . . . 9
(a ∪ b⊥ )⊥ = (a⊥ ∩ b) |
| 9 | 8 | ran 78 |
. . . . . . . 8
((a ∪ b⊥ )⊥ ∩
a⊥ ) = ((a⊥ ∩ b) ∩ a⊥ ) |
| 10 | | an32 83 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ a⊥ ) = ((a⊥ ∩ a⊥ ) ∩ b) |
| 11 | | anidm 111 |
. . . . . . . . . 10
(a⊥ ∩ a⊥ ) = a⊥ |
| 12 | 11 | ran 78 |
. . . . . . . . 9
((a⊥ ∩ a⊥ ) ∩ b) = (a⊥ ∩ b) |
| 13 | 10, 12 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a⊥ ) = (a⊥ ∩ b) |
| 14 | 9, 13 | ax-r2 36 |
. . . . . . 7
((a ∪ b⊥ )⊥ ∩
a⊥ ) = (a⊥ ∩ b) |
| 15 | 8 | ran 78 |
. . . . . . . 8
((a ∪ b⊥ )⊥ ∩
a) = ((a⊥ ∩ b) ∩ a) |
| 16 | | an32 83 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ a) =
((a⊥ ∩ a) ∩ b) |
| 17 | | ancom 74 |
. . . . . . . . . 10
((a⊥ ∩ a) ∩ b) =
(b ∩ (a⊥ ∩ a)) |
| 18 | | ancom 74 |
. . . . . . . . . . . . 13
(a⊥ ∩ a) = (a ∩
a⊥ ) |
| 19 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (a ∩ a⊥ ) |
| 20 | 19 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ a⊥ ) = 0 |
| 21 | 18, 20 | ax-r2 36 |
. . . . . . . . . . . 12
(a⊥ ∩ a) = 0 |
| 22 | 21 | lan 77 |
. . . . . . . . . . 11
(b ∩ (a⊥ ∩ a)) = (b ∩
0) |
| 23 | | an0 108 |
. . . . . . . . . . 11
(b ∩ 0) = 0 |
| 24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
(b ∩ (a⊥ ∩ a)) = 0 |
| 25 | 17, 24 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ a) ∩ b) =
0 |
| 26 | 16, 25 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a) =
0 |
| 27 | 15, 26 | ax-r2 36 |
. . . . . . 7
((a ∪ b⊥ )⊥ ∩
a) = 0 |
| 28 | 14, 27 | 2or 72 |
. . . . . 6
(((a ∪ b⊥ )⊥ ∩
a⊥ ) ∪ ((a ∪ b⊥ )⊥ ∩
a)) = ((a⊥ ∩ b) ∪ 0) |
| 29 | | or0 102 |
. . . . . 6
((a⊥ ∩ b) ∪ 0) = (a⊥ ∩ b) |
| 30 | 28, 29 | ax-r2 36 |
. . . . 5
(((a ∪ b⊥ )⊥ ∩
a⊥ ) ∪ ((a ∪ b⊥ )⊥ ∩
a)) = (a⊥ ∩ b) |
| 31 | 6, 30 | ax-r2 36 |
. . . 4
(((a ∪ b⊥ )⊥ ∩
a) ∪ ((a ∪ b⊥ )⊥ ∩
a⊥ )) = (a⊥ ∩ b) |
| 32 | 5, 31 | 2or 72 |
. . 3
(((a ∪ b⊥ ) ∩ a) ∪ (((a
∪ b⊥
)⊥ ∩ a) ∪
((a ∪ b⊥ )⊥ ∩
a⊥ ))) = (a ∪ (a⊥ ∩ b)) |
| 33 | 2, 32 | ax-r2 36 |
. 2
((((a ∪ b⊥ ) ∩ a) ∪ ((a
∪ b⊥
)⊥ ∩ a)) ∪
((a ∪ b⊥ )⊥ ∩
a⊥ )) = (a ∪ (a⊥ ∩ b)) |
| 34 | 1, 33 | ax-r2 36 |
1
((a ∪ b⊥ ) →5 a) = (a ∪
(a⊥ ∩ b)) |