Proof of Theorem ud5lem3a
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
2 | 1 | ran 78 |
. 2
((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) = ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ (a⊥ ∩ b))) |
3 | | comanr1 464 |
. . . . . 6
a C (a ∩ b) |
4 | | comanr1 464 |
. . . . . . 7
a⊥ C
(a⊥ ∩ b) |
5 | 4 | comcom6 459 |
. . . . . 6
a C (a⊥ ∩ b) |
6 | 3, 5 | com2or 483 |
. . . . 5
a C ((a ∩ b) ∪
(a⊥ ∩ b)) |
7 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b⊥ ) |
8 | 7 | comcom6 459 |
. . . . 5
a C (a⊥ ∩ b⊥ ) |
9 | 6, 8 | com2or 483 |
. . . 4
a C (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
10 | 9, 5 | fh2 470 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ (a⊥ ∩ b))) = (((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a⊥ ∩ b))) |
11 | 6, 8 | fh1r 473 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) = ((((a ∩
b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) |
12 | 3, 5 | fh1r 473 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) |
13 | | an32 83 |
. . . . . . . . . . . 12
((a ∩ b) ∩ a) =
((a ∩ a) ∩ b) |
14 | | anidm 111 |
. . . . . . . . . . . . 13
(a ∩ a) = a |
15 | 14 | ran 78 |
. . . . . . . . . . . 12
((a ∩ a) ∩ b) =
(a ∩ b) |
16 | 13, 15 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ b) ∩ a) =
(a ∩ b) |
17 | | ancom 74 |
. . . . . . . . . . . 12
((a⊥ ∩ b) ∩ a) =
(a ∩ (a⊥ ∩ b)) |
18 | | anass 76 |
. . . . . . . . . . . . . 14
((a ∩ a⊥ ) ∩ b) = (a ∩
(a⊥ ∩ b)) |
19 | 18 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∩ (a⊥ ∩ b)) = ((a ∩
a⊥ ) ∩ b) |
20 | | dff 101 |
. . . . . . . . . . . . . . . 16
0 = (a ∩ a⊥ ) |
21 | 20 | ax-r1 35 |
. . . . . . . . . . . . . . 15
(a ∩ a⊥ ) = 0 |
22 | 21 | ran 78 |
. . . . . . . . . . . . . 14
((a ∩ a⊥ ) ∩ b) = (0 ∩ b) |
23 | | an0r 109 |
. . . . . . . . . . . . . 14
(0 ∩ b) = 0 |
24 | 22, 23 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ a⊥ ) ∩ b) = 0 |
25 | 19, 24 | ax-r2 36 |
. . . . . . . . . . . 12
(a ∩ (a⊥ ∩ b)) = 0 |
26 | 17, 25 | ax-r2 36 |
. . . . . . . . . . 11
((a⊥ ∩ b) ∩ a) =
0 |
27 | 16, 26 | 2or 72 |
. . . . . . . . . 10
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
((a ∩ b) ∪ 0) |
28 | | or0 102 |
. . . . . . . . . 10
((a ∩ b) ∪ 0) = (a
∩ b) |
29 | 27, 28 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∩ a)
∪ ((a⊥ ∩ b) ∩ a)) =
(a ∩ b) |
30 | 12, 29 | ax-r2 36 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a) =
(a ∩ b) |
31 | | ancom 74 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ a) = (a ∩
(a⊥ ∩ b⊥ )) |
32 | | anass 76 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
33 | 32 | ax-r1 35 |
. . . . . . . . . 10
(a ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ b⊥ ) |
34 | 21 | ran 78 |
. . . . . . . . . . 11
((a ∩ a⊥ ) ∩ b⊥ ) = (0 ∩ b⊥ ) |
35 | | an0r 109 |
. . . . . . . . . . 11
(0 ∩ b⊥ ) =
0 |
36 | 34, 35 | ax-r2 36 |
. . . . . . . . . 10
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
37 | 33, 36 | ax-r2 36 |
. . . . . . . . 9
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
38 | 31, 37 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ a) = 0 |
39 | 30, 38 | 2or 72 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) = ((a ∩
b) ∪ 0) |
40 | 39, 28 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ a)
∪ ((a⊥ ∩ b⊥ ) ∩ a)) = (a ∩
b) |
41 | 11, 40 | ax-r2 36 |
. . . . 5
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) = (a ∩
b) |
42 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b) C a⊥ |
43 | 42 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b) C a |
44 | | coman2 186 |
. . . . . . . 8
(a⊥ ∩ b) C b |
45 | 43, 44 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a
∩ b) |
46 | 42, 44 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a⊥ ∩ b) |
47 | 45, 46 | com2or 483 |
. . . . . 6
(a⊥ ∩ b) C ((a
∩ b) ∪ (a⊥ ∩ b)) |
48 | 44 | comcom2 183 |
. . . . . . 7
(a⊥ ∩ b) C b⊥ |
49 | 42, 48 | com2an 484 |
. . . . . 6
(a⊥ ∩ b) C (a⊥ ∩ b⊥ ) |
50 | 47, 49 | fh1r 473 |
. . . . 5
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a⊥ ∩ b)) = ((((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b))) |
51 | 41, 50 | 2or 72 |
. . . 4
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b)))) |
52 | | ancom 74 |
. . . . . . . 8
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) |
53 | | ax-a2 31 |
. . . . . . . . . 10
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∪ (a
∩ b)) |
54 | 53 | lan 77 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) = ((a⊥ ∩ b) ∩ ((a⊥ ∩ b) ∪ (a
∩ b))) |
55 | | anabs 121 |
. . . . . . . . 9
((a⊥ ∩ b) ∩ ((a⊥ ∩ b) ∪ (a
∩ b))) = (a⊥ ∩ b) |
56 | 54, 55 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ b) ∩ ((a
∩ b) ∪ (a⊥ ∩ b))) = (a⊥ ∩ b) |
57 | 52, 56 | ax-r2 36 |
. . . . . . 7
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∩ b)) = (a⊥ ∩ b) |
58 | | an4 86 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b)) = ((a⊥ ∩ a⊥ ) ∩ (b⊥ ∩ b)) |
59 | | ancom 74 |
. . . . . . . . . . 11
(b⊥ ∩ b) = (b ∩
b⊥ ) |
60 | | dff 101 |
. . . . . . . . . . . 12
0 = (b ∩ b⊥ ) |
61 | 60 | ax-r1 35 |
. . . . . . . . . . 11
(b ∩ b⊥ ) = 0 |
62 | 59, 61 | ax-r2 36 |
. . . . . . . . . 10
(b⊥ ∩ b) = 0 |
63 | 62 | lan 77 |
. . . . . . . . 9
((a⊥ ∩ a⊥ ) ∩ (b⊥ ∩ b)) = ((a⊥ ∩ a⊥ ) ∩ 0) |
64 | | an0 108 |
. . . . . . . . 9
((a⊥ ∩ a⊥ ) ∩ 0) = 0 |
65 | 63, 64 | ax-r2 36 |
. . . . . . . 8
((a⊥ ∩ a⊥ ) ∩ (b⊥ ∩ b)) = 0 |
66 | 58, 65 | ax-r2 36 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b)) = 0 |
67 | 57, 66 | 2or 72 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b))) = ((a⊥ ∩ b) ∪ 0) |
68 | | or0 102 |
. . . . . 6
((a⊥ ∩ b) ∪ 0) = (a⊥ ∩ b) |
69 | 67, 68 | ax-r2 36 |
. . . . 5
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b))) = (a⊥ ∩ b) |
70 | 69 | lor 70 |
. . . 4
((a ∩ b) ∪ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (a⊥ ∩ b)) ∪ ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b)))) = ((a
∩ b) ∪ (a⊥ ∩ b)) |
71 | 51, 70 | ax-r2 36 |
. . 3
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ a) ∪ ((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
72 | 10, 71 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ (a⊥ ∩ b))) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
73 | 2, 72 | ax-r2 36 |
1
((a →5 b) ∩ (a
∪ (a⊥ ∩ b))) = ((a ∩
b) ∪ (a⊥ ∩ b)) |