| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wcom2an | GIF version | ||
| Description: Thm. 4.2 Beran p. 49. (Contributed by NM, 10-Nov-1998.) |
| Ref | Expression |
|---|---|
| wfh.1 | C (a, b) = 1 |
| wfh.2 | C (a, c) = 1 |
| Ref | Expression |
|---|---|
| wcom2an | C (a, (b ∩ c)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfh.1 | . . . . 5 C (a, b) = 1 | |
| 2 | 1 | wcomcom4 417 | . . . 4 C (a⊥ , b⊥ ) = 1 |
| 3 | wfh.2 | . . . . 5 C (a, c) = 1 | |
| 4 | 3 | wcomcom4 417 | . . . 4 C (a⊥ , c⊥ ) = 1 |
| 5 | 2, 4 | wcom2or 427 | . . 3 C (a⊥ , (b⊥ ∪ c⊥ )) = 1 |
| 6 | df-a 40 | . . . . . 6 (b ∩ c) = (b⊥ ∪ c⊥ )⊥ | |
| 7 | 6 | con2 67 | . . . . 5 (b ∩ c)⊥ = (b⊥ ∪ c⊥ ) |
| 8 | 7 | ax-r1 35 | . . . 4 (b⊥ ∪ c⊥ ) = (b ∩ c)⊥ |
| 9 | 8 | bi1 118 | . . 3 ((b⊥ ∪ c⊥ ) ≡ (b ∩ c)⊥ ) = 1 |
| 10 | 5, 9 | wcbtr 411 | . 2 C (a⊥ , (b ∩ c)⊥ ) = 1 |
| 11 | 10 | wcomcom5 420 | 1 C (a, (b ∩ c)) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 C wcmtr 29 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: ska4 433 |
| Copyright terms: Public domain | W3C validator |