Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wcbtr | GIF version |
Description: Transitive inference. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wcbtr.1 | C (a, b) = 1 |
wcbtr.2 | (b ≡ c) = 1 |
Ref | Expression |
---|---|
wcbtr | C (a, c) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wcbtr.1 | . . . 4 C (a, b) = 1 | |
2 | 1 | wdf-c2 384 | . . 3 (a ≡ ((a ∩ b) ∪ (a ∩ b⊥ ))) = 1 |
3 | wcbtr.2 | . . . . 5 (b ≡ c) = 1 | |
4 | 3 | wlan 370 | . . . 4 ((a ∩ b) ≡ (a ∩ c)) = 1 |
5 | 3 | wr4 199 | . . . . 5 (b⊥ ≡ c⊥ ) = 1 |
6 | 5 | wlan 370 | . . . 4 ((a ∩ b⊥ ) ≡ (a ∩ c⊥ )) = 1 |
7 | 4, 6 | w2or 372 | . . 3 (((a ∩ b) ∪ (a ∩ b⊥ )) ≡ ((a ∩ c) ∪ (a ∩ c⊥ ))) = 1 |
8 | 2, 7 | wr2 371 | . 2 (a ≡ ((a ∩ c) ∪ (a ∩ c⊥ ))) = 1 |
9 | 8 | wdf-c1 383 | 1 C (a, c) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 C wcmtr 29 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: wcom2an 428 wnbdi 429 ska2 432 ska4 433 woml6 436 |
Copyright terms: Public domain | W3C validator |