Proof of Theorem wcom2or
Step | Hyp | Ref
| Expression |
1 | | wfh.1 |
. . . . . . . . 9
C (a, b) = 1 |
2 | 1 | wcomcom 414 |
. . . . . . . 8
C (b, a) = 1 |
3 | 2 | wdf-c2 384 |
. . . . . . 7
(b ≡ ((b ∩ a) ∪
(b ∩ a⊥ ))) = 1 |
4 | | ancom 74 |
. . . . . . . . 9
(b ∩ a) = (a ∩
b) |
5 | | ancom 74 |
. . . . . . . . 9
(b ∩ a⊥ ) = (a⊥ ∩ b) |
6 | 4, 5 | 2or 72 |
. . . . . . . 8
((b ∩ a) ∪ (b
∩ a⊥ )) = ((a ∩ b) ∪
(a⊥ ∩ b)) |
7 | 6 | bi1 118 |
. . . . . . 7
(((b ∩ a) ∪ (b
∩ a⊥ )) ≡
((a ∩ b) ∪ (a⊥ ∩ b))) = 1 |
8 | 3, 7 | wr2 371 |
. . . . . 6
(b ≡ ((a ∩ b) ∪
(a⊥ ∩ b))) = 1 |
9 | | wfh.2 |
. . . . . . . . 9
C (a, c) = 1 |
10 | 9 | wcomcom 414 |
. . . . . . . 8
C (c, a) = 1 |
11 | 10 | wdf-c2 384 |
. . . . . . 7
(c ≡ ((c ∩ a) ∪
(c ∩ a⊥ ))) = 1 |
12 | | ancom 74 |
. . . . . . . . 9
(c ∩ a) = (a ∩
c) |
13 | | ancom 74 |
. . . . . . . . 9
(c ∩ a⊥ ) = (a⊥ ∩ c) |
14 | 12, 13 | 2or 72 |
. . . . . . . 8
((c ∩ a) ∪ (c
∩ a⊥ )) = ((a ∩ c) ∪
(a⊥ ∩ c)) |
15 | 14 | bi1 118 |
. . . . . . 7
(((c ∩ a) ∪ (c
∩ a⊥ )) ≡
((a ∩ c) ∪ (a⊥ ∩ c))) = 1 |
16 | 11, 15 | wr2 371 |
. . . . . 6
(c ≡ ((a ∩ c) ∪
(a⊥ ∩ c))) = 1 |
17 | 8, 16 | w2or 372 |
. . . . 5
((b ∪ c) ≡ (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ c) ∪ (a⊥ ∩ c)))) = 1 |
18 | | or4 84 |
. . . . . 6
(((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ c) ∪ (a⊥ ∩ c))) = (((a
∩ b) ∪ (a ∩ c))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) |
19 | 18 | bi1 118 |
. . . . 5
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a
∩ c) ∪ (a⊥ ∩ c))) ≡ (((a ∩ b) ∪
(a ∩ c)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c)))) = 1 |
20 | 17, 19 | wr2 371 |
. . . 4
((b ∪ c) ≡ (((a
∩ b) ∪ (a ∩ c))
∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c)))) = 1 |
21 | | ancom 74 |
. . . . . . . 8
((b ∪ c) ∩ a) =
(a ∩ (b ∪ c)) |
22 | 21 | bi1 118 |
. . . . . . 7
(((b ∪ c) ∩ a)
≡ (a ∩ (b ∪ c))) =
1 |
23 | 1, 9 | wfh1 423 |
. . . . . . 7
((a ∩ (b ∪ c))
≡ ((a ∩ b) ∪ (a
∩ c))) = 1 |
24 | 22, 23 | wr2 371 |
. . . . . 6
(((b ∪ c) ∩ a)
≡ ((a ∩ b) ∪ (a
∩ c))) = 1 |
25 | | ancom 74 |
. . . . . . . 8
((b ∪ c) ∩ a⊥ ) = (a⊥ ∩ (b ∪ c)) |
26 | 25 | bi1 118 |
. . . . . . 7
(((b ∪ c) ∩ a⊥ ) ≡ (a⊥ ∩ (b ∪ c))) =
1 |
27 | 1 | wcomcom3 416 |
. . . . . . . 8
C (a⊥ ,
b) = 1 |
28 | 9 | wcomcom3 416 |
. . . . . . . 8
C (a⊥ ,
c) = 1 |
29 | 27, 28 | wfh1 423 |
. . . . . . 7
((a⊥ ∩
(b ∪ c)) ≡ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) = 1 |
30 | 26, 29 | wr2 371 |
. . . . . 6
(((b ∪ c) ∩ a⊥ ) ≡ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) = 1 |
31 | 24, 30 | w2or 372 |
. . . . 5
((((b ∪ c) ∩ a)
∪ ((b ∪ c) ∩ a⊥ )) ≡ (((a ∩ b) ∪
(a ∩ c)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c)))) = 1 |
32 | 31 | wr1 197 |
. . . 4
((((a ∩ b) ∪ (a
∩ c)) ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ c))) ≡ (((b ∪ c) ∩
a) ∪ ((b ∪ c) ∩
a⊥ ))) =
1 |
33 | 20, 32 | wr2 371 |
. . 3
((b ∪ c) ≡ (((b
∪ c) ∩ a) ∪ ((b
∪ c) ∩ a⊥ ))) = 1 |
34 | 33 | wdf-c1 383 |
. 2
C ((b ∪ c), a) =
1 |
35 | 34 | wcomcom 414 |
1
C (a, (b ∪ c)) =
1 |