QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wcomcom4 GIF version

Theorem wcomcom4 417
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 13-Oct-1997.)
Hypothesis
Ref Expression
wcomcom.1 C (a, b) = 1
Assertion
Ref Expression
wcomcom4 C (a , b ) = 1

Proof of Theorem wcomcom4
StepHypRef Expression
1 wcomcom.1 . . 3 C (a, b) = 1
21wcomcom3 416 . 2 C (a , b) = 1
32wcomcom2 415 1 C (a , b ) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  1wt 8   C wcmtr 29
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by:  wcomd  418  wcomcom5  420  wfh3  425  wfh4  426  wcom2an  428  wlem14  430
  Copyright terms: Public domain W3C validator