| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wcomcom2 | GIF version | ||
| Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 13-Oct-1997.) |
| Ref | Expression |
|---|---|
| wcomcom.1 | C (a, b) = 1 |
| Ref | Expression |
|---|---|
| wcomcom2 | C (a, b⊥ ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wcomcom.1 | . . . . 5 C (a, b) = 1 | |
| 2 | 1 | wdf-c2 384 | . . . 4 (a ≡ ((a ∩ b) ∪ (a ∩ b⊥ ))) = 1 |
| 3 | ax-a1 30 | . . . . . . 7 b = b⊥ ⊥ | |
| 4 | 3 | bi1 118 | . . . . . 6 (b ≡ b⊥ ⊥ ) = 1 |
| 5 | 4 | wlan 370 | . . . . 5 ((a ∩ b) ≡ (a ∩ b⊥ ⊥ )) = 1 |
| 6 | 5 | wr5-2v 366 | . . . 4 (((a ∩ b) ∪ (a ∩ b⊥ )) ≡ ((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ ))) = 1 |
| 7 | 2, 6 | wr2 371 | . . 3 (a ≡ ((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ ))) = 1 |
| 8 | ax-a2 31 | . . . 4 ((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ )) = ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ )) | |
| 9 | 8 | bi1 118 | . . 3 (((a ∩ b⊥ ⊥ ) ∪ (a ∩ b⊥ )) ≡ ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ ))) = 1 |
| 10 | 7, 9 | wr2 371 | . 2 (a ≡ ((a ∩ b⊥ ) ∪ (a ∩ b⊥ ⊥ ))) = 1 |
| 11 | 10 | wdf-c1 383 | 1 C (a, b⊥ ) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 C wcmtr 29 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: wcomcom3 416 wcomcom4 417 wfh1 423 wfh2 424 wnbdi 429 ska2 432 ska4 433 |
| Copyright terms: Public domain | W3C validator |