Proof of Theorem wcom3ii
Step | Hyp | Ref
| Expression |
1 | | wcomcom.1 |
. . . . . 6
C (a, b) = 1 |
2 | 1 | wcomcom 414 |
. . . . 5
C (b, a) = 1 |
3 | 2 | wcomd 418 |
. . . 4
(b ≡ ((b ∪ a) ∩
(b ∪ a⊥ ))) = 1 |
4 | 3 | wlan 370 |
. . 3
((a ∩ b) ≡ (a
∩ ((b ∪ a) ∩ (b
∪ a⊥ )))) =
1 |
5 | | anass 76 |
. . . . . 6
((a ∩ (b ∪ a))
∩ (b ∪ a⊥ )) = (a ∩ ((b
∪ a) ∩ (b ∪ a⊥ ))) |
6 | 5 | bi1 118 |
. . . . 5
(((a ∩ (b ∪ a))
∩ (b ∪ a⊥ )) ≡ (a ∩ ((b
∪ a) ∩ (b ∪ a⊥ )))) = 1 |
7 | 6 | wr1 197 |
. . . 4
((a ∩ ((b ∪ a) ∩
(b ∪ a⊥ ))) ≡ ((a ∩ (b ∪
a)) ∩ (b ∪ a⊥ ))) = 1 |
8 | | ax-a2 31 |
. . . . . . . 8
(b ∪ a) = (a ∪
b) |
9 | 8 | bi1 118 |
. . . . . . 7
((b ∪ a) ≡ (a
∪ b)) = 1 |
10 | 9 | wlan 370 |
. . . . . 6
((a ∩ (b ∪ a))
≡ (a ∩ (a ∪ b))) =
1 |
11 | | anabs 121 |
. . . . . . 7
(a ∩ (a ∪ b)) =
a |
12 | 11 | bi1 118 |
. . . . . 6
((a ∩ (a ∪ b))
≡ a) = 1 |
13 | 10, 12 | wr2 371 |
. . . . 5
((a ∩ (b ∪ a))
≡ a) = 1 |
14 | | ax-a2 31 |
. . . . . 6
(b ∪ a⊥ ) = (a⊥ ∪ b) |
15 | 14 | bi1 118 |
. . . . 5
((b ∪ a⊥ ) ≡ (a⊥ ∪ b)) = 1 |
16 | 13, 15 | w2an 373 |
. . . 4
(((a ∩ (b ∪ a))
∩ (b ∪ a⊥ )) ≡ (a ∩ (a⊥ ∪ b))) = 1 |
17 | 7, 16 | wr2 371 |
. . 3
((a ∩ ((b ∪ a) ∩
(b ∪ a⊥ ))) ≡ (a ∩ (a⊥ ∪ b))) = 1 |
18 | 4, 17 | wr2 371 |
. 2
((a ∩ b) ≡ (a
∩ (a⊥ ∪ b))) = 1 |
19 | 18 | wr1 197 |
1
((a ∩ (a⊥ ∪ b)) ≡ (a
∩ b)) = 1 |