Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wcomcom3 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wcomcom.1 | C (a, b) = 1 |
Ref | Expression |
---|---|
wcomcom3 | C (a⊥ , b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wcomcom.1 | . . . 4 C (a, b) = 1 | |
2 | 1 | wcomcom 414 | . . 3 C (b, a) = 1 |
3 | 2 | wcomcom2 415 | . 2 C (b, a⊥ ) = 1 |
4 | 3 | wcomcom 414 | 1 C (a⊥ , b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 1wt 8 C wcmtr 29 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: wcomcom4 417 wfh2 424 wcom2or 427 wlem14 430 ska2 432 woml6 436 woml7 437 |
Copyright terms: Public domain | W3C validator |