Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wom5 | GIF version |
Description: Orthomodular law. Kalmbach 83 p. 22. (Contributed by NM, 13-Oct-1997.) |
Ref | Expression |
---|---|
wom5.1 | (a ≤2 b) = 1 |
wom5.2 | ((b ∩ a⊥ ) ≡ 0) = 1 |
Ref | Expression |
---|---|
wom5 | (a ≡ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wom5.2 | . . . . 5 ((b ∩ a⊥ ) ≡ 0) = 1 | |
2 | 1 | wr1 197 | . . . 4 (0 ≡ (b ∩ a⊥ )) = 1 |
3 | ancom 74 | . . . . 5 (b ∩ a⊥ ) = (a⊥ ∩ b) | |
4 | 3 | bi1 118 | . . . 4 ((b ∩ a⊥ ) ≡ (a⊥ ∩ b)) = 1 |
5 | 2, 4 | wr2 371 | . . 3 (0 ≡ (a⊥ ∩ b)) = 1 |
6 | 5 | wlor 368 | . 2 ((a ∪ 0) ≡ (a ∪ (a⊥ ∩ b))) = 1 |
7 | or0 102 | . . 3 (a ∪ 0) = a | |
8 | 7 | bi1 118 | . 2 ((a ∪ 0) ≡ a) = 1 |
9 | wom5.1 | . . 3 (a ≤2 b) = 1 | |
10 | 9 | wom4 380 | . 2 ((a ∪ (a⊥ ∩ b)) ≡ b) = 1 |
11 | 6, 8, 10 | w3tr2 375 | 1 (a ≡ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 1wt 8 0wf 9 ≤2 wle2 10 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 |
This theorem is referenced by: wfh1 423 wfh2 424 |
Copyright terms: Public domain | W3C validator |