ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt Unicode version

Theorem addlocprlemgt 7349
Description: Lemma for addlocpr 7351. The  ( D  +Q  E
)  <Q  Q case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemgt  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7  |-  ( ph  ->  A  e.  P. )
2 addlocprlem.b . . . . . . 7  |-  ( ph  ->  B  e.  P. )
3 addlocprlem.qr . . . . . . 7  |-  ( ph  ->  Q  <Q  R )
4 addlocprlem.p . . . . . . 7  |-  ( ph  ->  P  e.  Q. )
5 addlocprlem.qppr . . . . . . 7  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
6 addlocprlem.dlo . . . . . . 7  |-  ( ph  ->  D  e.  ( 1st `  A ) )
7 addlocprlem.uup . . . . . . 7  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
8 addlocprlem.du . . . . . . 7  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
9 addlocprlem.elo . . . . . . 7  |-  ( ph  ->  E  e.  ( 1st `  B ) )
10 addlocprlem.tup . . . . . . 7  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
11 addlocprlem.et . . . . . . 7  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7347 . . . . . 6  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1312adantr 274 . . . . 5  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( U  +Q  T )  <Q  (
( D  +Q  E
)  +Q  ( P  +Q  P ) ) )
14 prop 7290 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
151, 14syl 14 . . . . . . . . . . 11  |-  ( ph  -> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P. )
16 elprnql 7296 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  D  e.  ( 1st `  A ) )  ->  D  e.  Q. )
1715, 6, 16syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  D  e.  Q. )
18 prop 7290 . . . . . . . . . . . 12  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
192, 18syl 14 . . . . . . . . . . 11  |-  ( ph  -> 
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P. )
20 elprnql 7296 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  e.  ( 1st `  B ) )  ->  E  e.  Q. )
2119, 9, 20syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  E  e.  Q. )
22 addclnq 7190 . . . . . . . . . 10  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  +Q  E
)  e.  Q. )
2317, 21, 22syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( D  +Q  E
)  e.  Q. )
24 ltrelnq 7180 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
2524brel 4591 . . . . . . . . . . 11  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
263, 25syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
2726simpld 111 . . . . . . . . 9  |-  ( ph  ->  Q  e.  Q. )
28 addclnq 7190 . . . . . . . . . 10  |-  ( ( P  e.  Q.  /\  P  e.  Q. )  ->  ( P  +Q  P
)  e.  Q. )
294, 4, 28syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( P  +Q  P
)  e.  Q. )
30 ltanqg 7215 . . . . . . . . 9  |-  ( ( ( D  +Q  E
)  e.  Q.  /\  Q  e.  Q.  /\  ( P  +Q  P )  e. 
Q. )  ->  (
( D  +Q  E
)  <Q  Q  <->  ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q ) ) )
3123, 27, 29, 30syl3anc 1216 . . . . . . . 8  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  <->  ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q ) ) )
32 addcomnqg 7196 . . . . . . . . . 10  |-  ( ( ( P  +Q  P
)  e.  Q.  /\  ( D  +Q  E
)  e.  Q. )  ->  ( ( P  +Q  P )  +Q  ( D  +Q  E ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
3329, 23, 32syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( ( P  +Q  P )  +Q  ( D  +Q  E ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
34 addcomnqg 7196 . . . . . . . . . 10  |-  ( ( ( P  +Q  P
)  e.  Q.  /\  Q  e.  Q. )  ->  ( ( P  +Q  P )  +Q  Q
)  =  ( Q  +Q  ( P  +Q  P ) ) )
3529, 27, 34syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( ( P  +Q  P )  +Q  Q
)  =  ( Q  +Q  ( P  +Q  P ) ) )
3633, 35breq12d 3942 . . . . . . . 8  |-  ( ph  ->  ( ( ( P  +Q  P )  +Q  ( D  +Q  E
) )  <Q  (
( P  +Q  P
)  +Q  Q )  <-> 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) 
<Q  ( Q  +Q  ( P  +Q  P ) ) ) )
3731, 36bitrd 187 . . . . . . 7  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  <->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) ) ) )
3837biimpa 294 . . . . . 6  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) ) )
395breq2d 3941 . . . . . . 7  |-  ( ph  ->  ( ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  ( Q  +Q  ( P  +Q  P ) )  <->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R ) )
4039adantr 274 . . . . . 6  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( ( D  +Q  E )  +Q  ( P  +Q  P ) )  <Q 
( Q  +Q  ( P  +Q  P ) )  <-> 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) 
<Q  R ) )
4138, 40mpbid 146 . . . . 5  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R )
4213, 41jca 304 . . . 4  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( U  +Q  T )  <Q 
( ( D  +Q  E )  +Q  ( P  +Q  P ) )  /\  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  <Q  R ) )
43 ltsonq 7213 . . . . 5  |-  <Q  Or  Q.
4443, 24sotri 4934 . . . 4  |-  ( ( ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) )  /\  (
( D  +Q  E
)  +Q  ( P  +Q  P ) ) 
<Q  R )  ->  ( U  +Q  T )  <Q  R )
4542, 44syl 14 . . 3  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( U  +Q  T )  <Q  R )
461, 7jca 304 . . . . 5  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
472, 10jca 304 . . . . 5  |-  ( ph  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B ) ) )
4826simprd 113 . . . . 5  |-  ( ph  ->  R  e.  Q. )
49 addnqpru 7345 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
5046, 47, 48, 49syl21anc 1215 . . . 4  |-  ( ph  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
5150adantr 274 . . 3  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
5245, 51mpd 13 . 2  |-  ( (
ph  /\  ( D  +Q  E )  <Q  Q )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) )
5352ex 114 1  |-  ( ph  ->  ( ( D  +Q  E )  <Q  Q  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7095    +Q cplq 7097    <Q cltq 7100   P.cnp 7106    +P. cpp 7108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-pli 7120  df-mi 7121  df-lti 7122  df-plpq 7159  df-mpq 7160  df-enq 7162  df-nqqs 7163  df-plqqs 7164  df-mqqs 7165  df-1nqqs 7166  df-rq 7167  df-ltnqqs 7168  df-inp 7281  df-iplp 7283
This theorem is referenced by:  addlocprlem  7350
  Copyright terms: Public domain W3C validator