ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnptoprest Unicode version

Theorem cnptoprest 12408
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
Hypotheses
Ref Expression
cnprest.1  |-  X  = 
U. J
cnprest.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnptoprest  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )

Proof of Theorem cnptoprest
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 984 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  J  e.  Top )
2 simpl3 986 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  A  C_  X
)
3 cnprest.1 . . . . . . . . . 10  |-  X  = 
U. J
43ntrss2 12290 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
51, 2, 4syl2anc 408 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( int `  J ) `  A )  C_  A
)
6 simprl 520 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  P  e.  ( ( int `  J
) `  A )
)
75, 6sseldd 3098 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  P  e.  A )
8 fvres 5445 . . . . . . 7  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
97, 8syl 14 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F  |`  A ) `  P )  =  ( F `  P ) )
109eqcomd 2145 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F `  P )  =  ( ( F  |`  A ) `
 P ) )
1110eleq1d 2208 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F `  P )  e.  y  <->  ( ( F  |`  A ) `  P
)  e.  y ) )
12 inss1 3296 . . . . . . . . 9  |-  ( x  i^i  A )  C_  x
13 imass2 4915 . . . . . . . . 9  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
14 sstr2 3104 . . . . . . . . 9  |-  ( ( F " ( x  i^i  A ) ) 
C_  ( F "
x )  ->  (
( F " x
)  C_  y  ->  ( F " ( x  i^i  A ) ) 
C_  y ) )
1512, 13, 14mp2b 8 . . . . . . . 8  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
1615anim2i 339 . . . . . . 7  |-  ( ( P  e.  x  /\  ( F " x ) 
C_  y )  -> 
( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)
1716reximi 2529 . . . . . 6  |-  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)
183ntropn 12286 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
191, 2, 18syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( int `  J ) `  A )  e.  J
)
20 inopn 12170 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  x  e.  J  /\  ( ( int `  J
) `  A )  e.  J )  ->  (
x  i^i  ( ( int `  J ) `  A ) )  e.  J )
21203com23 1187 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  x  e.  J )  ->  (
x  i^i  ( ( int `  J ) `  A ) )  e.  J )
22213expia 1183 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J )  ->  (
x  e.  J  -> 
( x  i^i  (
( int `  J
) `  A )
)  e.  J ) )
231, 19, 22syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( x  e.  J  ->  ( x  i^i  ( ( int `  J ) `  A
) )  e.  J
) )
24 elin 3259 . . . . . . . . . . . . . 14  |-  ( P  e.  ( x  i^i  ( ( int `  J
) `  A )
)  <->  ( P  e.  x  /\  P  e.  ( ( int `  J
) `  A )
) )
2524simplbi2com 1420 . . . . . . . . . . . . 13  |-  ( P  e.  ( ( int `  J ) `  A
)  ->  ( P  e.  x  ->  P  e.  ( x  i^i  (
( int `  J
) `  A )
) ) )
266, 25syl 14 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( P  e.  x  ->  P  e.  ( x  i^i  (
( int `  J
) `  A )
) ) )
27 sslin 3302 . . . . . . . . . . . . . 14  |-  ( ( ( int `  J
) `  A )  C_  A  ->  ( x  i^i  ( ( int `  J
) `  A )
)  C_  ( x  i^i  A ) )
28 imass2 4915 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  ( ( int `  J ) `
 A ) ) 
C_  ( x  i^i 
A )  ->  ( F " ( x  i^i  ( ( int `  J
) `  A )
) )  C_  ( F " ( x  i^i 
A ) ) )
295, 27, 283syl 17 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  ( F " ( x  i^i 
A ) ) )
30 sstr2 3104 . . . . . . . . . . . . 13  |-  ( ( F " ( x  i^i  ( ( int `  J ) `  A
) ) )  C_  ( F " ( x  i^i  A ) )  ->  ( ( F
" ( x  i^i 
A ) )  C_  y  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) )
3129, 30syl 14 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F " ( x  i^i 
A ) )  C_  y  ->  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) )
3226, 31anim12d 333 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  -> 
( P  e.  ( x  i^i  ( ( int `  J ) `
 A ) )  /\  ( F "
( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) )
3323, 32anim12d 333 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( (
x  e.  J  /\  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)  ->  ( (
x  i^i  ( ( int `  J ) `  A ) )  e.  J  /\  ( P  e.  ( x  i^i  ( ( int `  J
) `  A )
)  /\  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) ) )
34 eleq2 2203 . . . . . . . . . . . 12  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( P  e.  z  <->  P  e.  (
x  i^i  ( ( int `  J ) `  A ) ) ) )
35 imaeq2 4877 . . . . . . . . . . . . 13  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( F " z )  =  ( F " ( x  i^i  ( ( int `  J ) `  A
) ) ) )
3635sseq1d 3126 . . . . . . . . . . . 12  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( ( F " z )  C_  y 
<->  ( F " (
x  i^i  ( ( int `  J ) `  A ) ) ) 
C_  y ) )
3734, 36anbi12d 464 . . . . . . . . . . 11  |-  ( z  =  ( x  i^i  ( ( int `  J
) `  A )
)  ->  ( ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  ( P  e.  ( x  i^i  (
( int `  J
) `  A )
)  /\  ( F " ( x  i^i  (
( int `  J
) `  A )
) )  C_  y
) ) )
3837rspcev 2789 . . . . . . . . . 10  |-  ( ( ( x  i^i  (
( int `  J
) `  A )
)  e.  J  /\  ( P  e.  (
x  i^i  ( ( int `  J ) `  A ) )  /\  ( F " ( x  i^i  ( ( int `  J ) `  A
) ) )  C_  y ) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
)
3933, 38syl6 33 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( (
x  e.  J  /\  ( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )
)  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
4039expdimp 257 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  x  e.  J )  ->  (
( P  e.  x  /\  ( F " (
x  i^i  A )
)  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) )
4140rexlimdva 2549 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) )
42 eleq2 2203 . . . . . . . . 9  |-  ( z  =  x  ->  ( P  e.  z  <->  P  e.  x ) )
43 imaeq2 4877 . . . . . . . . . 10  |-  ( z  =  x  ->  ( F " z )  =  ( F " x
) )
4443sseq1d 3126 . . . . . . . . 9  |-  ( z  =  x  ->  (
( F " z
)  C_  y  <->  ( F " x )  C_  y
) )
4542, 44anbi12d 464 . . . . . . . 8  |-  ( z  =  x  ->  (
( P  e.  z  /\  ( F "
z )  C_  y
)  <->  ( P  e.  x  /\  ( F
" x )  C_  y ) ) )
4645cbvrexv 2655 . . . . . . 7  |-  ( E. z  e.  J  ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )
4741, 46syl6ib 160 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
4817, 47impbid2 142 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
49 vex 2689 . . . . . . . 8  |-  x  e. 
_V
5049inex1 4062 . . . . . . 7  |-  ( x  i^i  A )  e. 
_V
5150a1i 9 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
52 uniexg 4361 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
531, 52syl 14 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  U. J  e. 
_V )
542, 3sseqtrdi 3145 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  A  C_  U. J
)
5553, 54ssexd 4068 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  A  e.  _V )
56 elrest 12127 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
571, 55, 56syl2anc 408 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
58 eleq2 2203 . . . . . . . 8  |-  ( z  =  ( x  i^i 
A )  ->  ( P  e.  z  <->  P  e.  ( x  i^i  A ) ) )
59 elin 3259 . . . . . . . . . 10  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
6059rbaib 906 . . . . . . . . 9  |-  ( P  e.  A  ->  ( P  e.  ( x  i^i  A )  <->  P  e.  x ) )
617, 60syl 14 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( P  e.  ( x  i^i  A
)  <->  P  e.  x
) )
6258, 61sylan9bbr 458 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  ( P  e.  z  <->  P  e.  x ) )
63 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  z  =  ( x  i^i 
A ) )
6463imaeq2d 4881 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( F  |`  A )
" z )  =  ( ( F  |`  A ) " (
x  i^i  A )
) )
65 inss2 3297 . . . . . . . . . 10  |-  ( x  i^i  A )  C_  A
66 resima2 4853 . . . . . . . . . 10  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
6765, 66ax-mp 5 . . . . . . . . 9  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
6864, 67syl6eq 2188 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( F  |`  A )
" z )  =  ( F " (
x  i^i  A )
) )
6968sseq1d 3126 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( ( F  |`  A ) " z
)  C_  y  <->  ( F " ( x  i^i  A
) )  C_  y
) )
7062, 69anbi12d 464 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  A  C_  X
)  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y ) )  /\  z  =  ( x  i^i  A
) )  ->  (
( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  x  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
7151, 57, 70rexxfr2d 4386 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. z  e.  ( Jt  A
) ( P  e.  z  /\  ( ( F  |`  A ) " z )  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
7248, 71bitr4d 190 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  <->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
7311, 72imbi12d 233 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( ( ( F  |`  A ) `  P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
7473ralbidv 2437 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  A. y  e.  K  ( ( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
753toptopon 12185 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
761, 75sylib 121 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  J  e.  (TopOn `  X ) )
77 simpl2 985 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  K  e.  Top )
78 cnprest.2 . . . . . 6  |-  Y  = 
U. K
7978toptopon 12185 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
8077, 79sylib 121 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  K  e.  (TopOn `  Y ) )
812, 7sseldd 3098 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  P  e.  X )
82 iscnp 12368 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
8376, 80, 81, 82syl3anc 1216 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
84 simprr 521 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  F : X
--> Y )
8584biantrurd 303 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
8683, 85bitr4d 190 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
87 simp1l 1005 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  J  e.  Top )
8887, 75sylib 121 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  J  e.  (TopOn `  X ) )
89 simp1r 1006 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  A  C_  X
)
90 resttopon 12340 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
9188, 89, 90syl2anc 408 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( Jt  A )  e.  (TopOn `  A
) )
92 simp3 983 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  K  e.  Top )
9392, 79sylib 121 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  K  e.  (TopOn `  Y ) )
9443ad2ant1 1002 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( int `  J ) `  A
)  C_  A )
95 simp2l 1007 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  ( ( int `  J
) `  A )
)
9694, 95sseldd 3098 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  P  e.  A
)
97 iscnp 12368 . . . . 5  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  Y )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
9891, 93, 96, 97syl3anc 1216 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
99 simp2r 1008 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  F : X --> Y )
10099, 89fssresd 5299 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( F  |`  A ) : A --> Y )
101100biantrurd 303 . . . 4  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) )  <->  ( ( F  |`  A ) : A --> Y  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
10298, 101bitr4d 190 . . 3  |-  ( ( ( J  e.  Top  /\  A  C_  X )  /\  ( P  e.  ( ( int `  J
) `  A )  /\  F : X --> Y )  /\  K  e.  Top )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
1031, 2, 6, 84, 77, 102syl221anc 1227 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  A. y  e.  K  ( (
( F  |`  A ) `
 P )  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) )
10474, 86, 1033bitr4d 219 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
( int `  J
) `  A )  /\  F : X --> Y ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686    i^i cin 3070    C_ wss 3071   U.cuni 3736    |` cres 4541   "cima 4542   -->wf 5119   ` cfv 5123  (class class class)co 5774   ↾t crest 12120   Topctop 12164  TopOnctopon 12177   intcnt 12262    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-rest 12122  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cnp 12358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator