![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | anim12i 331 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: sylanl2 395 sylanr2 397 andi 765 pm4.55dc 880 xoranor 1309 19.41h 1616 sbimi 1688 equs5e 1717 exdistrfor 1722 equs45f 1724 sbidm 1773 eu3h 1987 eupickb 2023 2exeu 2034 darii 2042 festino 2048 baroco 2049 r19.27av 2493 rspc2ev 2716 reu3 2783 difdif 3098 ssddif 3205 inssdif 3207 difin 3208 difindiss 3225 indifdir 3227 difrab 3245 iundif2ss 3751 trssord 4143 ordsuc 4314 find 4348 imainss 4769 dffun5r 4944 fof 5137 f1ocnv 5170 fv3 5229 relelfvdm 5237 funimass4 5256 fvelimab 5261 funconstss 5317 dff2 5343 dffo5 5348 dff1o6 5447 oprabid 5568 ssoprab2i 5624 releldm2 5842 recexgt0sr 7012 lediv2a 8040 lbreu 8090 elfzp12 9192 focdmex 9811 sizef1rn 9813 cau3lem 10138 dvdsnegb 10357 dvds2add 10374 dvds2sub 10375 ndvdssub 10474 gcd2n0cl 10505 divgcdcoprmex 10628 cncongr1 10629 |
Copyright terms: Public domain | W3C validator |