ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcvgfsum Unicode version

Theorem efcvgfsum 11373
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1  |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
Assertion
Ref Expression
efcvgfsum  |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
Distinct variable group:    k, n, A
Allowed substitution hints:    F( k, n)

Proof of Theorem efcvgfsum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 0zd 9066 . . . . . . 7  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
0  e.  ZZ )
2 nn0z 9074 . . . . . . . 8  |-  ( n  e.  NN0  ->  n  e.  ZZ )
32adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  ->  n  e.  ZZ )
41, 3fzfigd 10204 . . . . . 6  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  -> 
( 0 ... n
)  e.  Fin )
5 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  A  e.  CC )
6 elfznn0 9894 . . . . . . . 8  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
76adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  k  e.  NN0 )
8 eftcl 11360 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
95, 7, 8syl2anc 408 . . . . . 6  |-  ( ( ( A  e.  CC  /\  n  e.  NN0 )  /\  k  e.  (
0 ... n ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
104, 9fsumcl 11169 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  NN0 )  ->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )
1110ralrimiva 2505 . . . 4  |-  ( A  e.  CC  ->  A. n  e.  NN0  sum_ k  e.  ( 0 ... n ) ( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
12 efcvgfsum.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
1312fnmpt 5249 . . . 4  |-  ( A. n  e.  NN0  sum_ k  e.  ( 0 ... n
) ( ( A ^ k )  / 
( ! `  k
) )  e.  CC  ->  F  Fn  NN0 )
1411, 13syl 14 . . 3  |-  ( A  e.  CC  ->  F  Fn  NN0 )
15 nn0uz 9360 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
16 0zd 9066 . . . . 5  |-  ( A  e.  CC  ->  0  e.  ZZ )
17 eqid 2139 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
1817eftvalcn 11363 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
1918, 8eqeltrd 2216 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2015, 16, 19serf 10247 . . . 4  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
2120ffnd 5273 . . 3  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  Fn 
NN0 )
22 simpr 109 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
23 0zd 9066 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
0  e.  ZZ )
2422nn0zd 9171 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ZZ )
2523, 24fzfigd 10204 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( 0 ... j
)  e.  Fin )
26 simpll 518 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  A  e.  CC )
27 elfznn0 9894 . . . . . . . 8  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
2827adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  k  e.  NN0 )
2926, 28, 8syl2anc 408 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
3025, 29fsumcl 11169 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )
31 oveq2 5782 . . . . . . 7  |-  ( n  =  j  ->  (
0 ... n )  =  ( 0 ... j
) )
3231sumeq1d 11135 . . . . . 6  |-  ( n  =  j  ->  sum_ k  e.  ( 0 ... n
) ( ( A ^ k )  / 
( ! `  k
) )  =  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) ) )
3332, 12fvmptg 5497 . . . . 5  |-  ( ( j  e.  NN0  /\  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  e.  CC )  -> 
( F `  j
)  =  sum_ k  e.  ( 0 ... j
) ( ( A ^ k )  / 
( ! `  k
) ) )
3422, 30, 33syl2anc 408 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  sum_ k  e.  ( 0 ... j
) ( ( A ^ k )  / 
( ! `  k
) ) )
35 simpll 518 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  A  e.  CC )
36 elnn0uz 9363 . . . . . . . 8  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
3736biimpri 132 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
3837adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  k  e.  NN0 )
3935, 38, 18syl2anc 408 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
4022, 15eleqtrdi 2232 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
4135, 38, 8syl2anc 408 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  ( ZZ>=
`  0 ) )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
4239, 40, 41fsum3ser 11166 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j ) ( ( A ^ k
)  /  ( ! `
 k ) )  =  (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
4334, 42eqtrd 2172 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( F `  j
)  =  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )
4414, 21, 43eqfnfvd 5521 . 2  |-  ( A  e.  CC  ->  F  =  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) )
4517efcvg 11372 . 2  |-  ( A  e.  CC  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
4644, 45eqbrtrd 3950 1  |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929    |-> cmpt 3989    Fn wfn 5118   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620    + caddc 7623    / cdiv 8432   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218   ^cexp 10292   !cfa 10471    ~~> cli 11047   sum_csu 11122   expce 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator