ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2v Unicode version

Theorem rspc2v 2714
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
Hypotheses
Ref Expression
rspc2v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc2v.2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
rspc2v  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
Distinct variable groups:    x, y, A   
y, B    x, C    x, D, y    ch, x    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    B( x)    C( y)

Proof of Theorem rspc2v
StepHypRef Expression
1 nfv 1462 . 2  |-  F/ x ch
2 nfv 1462 . 2  |-  F/ y ps
3 rspc2v.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
4 rspc2v.2 . 2  |-  ( y  =  B  ->  ( ch 
<->  ps ) )
51, 2, 3, 4rspc2 2712 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604
This theorem is referenced by:  rspc2va  2715  rspc3v  2717  wetriext  4327  f1veqaeq  5440  isorel  5479  fovcl  5637  caovclg  5684  caovcomg  5687  smoel  5949  unfiexmid  6438  supmoti  6465  supsnti  6477  isotilem  6478  cauappcvgprlem1  6911  caucvgprlemnkj  6918  caucvgprlemnbj  6919  caucvgprprlemval  6940  frecuzrdgrrn  9490  frec2uzrdg  9491  frecuzrdgrcl  9492  frecuzrdgrclt  9497  iseqcaopr3  9556  iseqhomo  9565  climcn2  10286
  Copyright terms: Public domain W3C validator