ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft GIF version

Theorem seq3shft 10610
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex (𝜑𝐹𝑉)
seq3shft.m (𝜑𝑀 ∈ ℤ)
seq3shft.n (𝜑𝑁 ∈ ℤ)
seq3shft.fn ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
seq3shft.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3shft (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seq3shft
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seq3shft.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seq3shft.ex . . . . . . 7 (𝜑𝐹𝑉)
43adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐹𝑉)
5 seq3shft.n . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
65zcnd 9174 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
76adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
8 eluzelz 9335 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
98adantl 275 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
109zcnd 9174 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℂ)
11 shftvalg 10608 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
124, 7, 10, 11syl3anc 1216 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) = (𝐹‘(𝑥𝑁)))
13 fveq2 5421 . . . . . . 7 (𝑎 = (𝑥𝑁) → (𝐹𝑎) = (𝐹‘(𝑥𝑁)))
1413eleq1d 2208 . . . . . 6 (𝑎 = (𝑥𝑁) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹‘(𝑥𝑁)) ∈ 𝑆))
15 seq3shft.fn . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)
1615ralrimiva 2505 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆)
17 fveq2 5421 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
1817eleq1d 2208 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑎) ∈ 𝑆))
1918cbvralv 2654 . . . . . . . 8 (∀𝑥 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2016, 19sylib 121 . . . . . . 7 (𝜑 → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
2120adantr 274 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ‘(𝑀𝑁))(𝐹𝑎) ∈ 𝑆)
222, 5zsubcld 9178 . . . . . . . 8 (𝜑 → (𝑀𝑁) ∈ ℤ)
2322adantr 274 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ∈ ℤ)
245adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
259, 24zsubcld 9178 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ ℤ)
262zred 9173 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2726adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
289zred 9173 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
2924zred 9173 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑁 ∈ ℝ)
30 eluzle 9338 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
3130adantl 275 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
3227, 28, 29, 31lesub1dd 8323 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑀𝑁) ≤ (𝑥𝑁))
33 eluz2 9332 . . . . . . 7 ((𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)) ↔ ((𝑀𝑁) ∈ ℤ ∧ (𝑥𝑁) ∈ ℤ ∧ (𝑀𝑁) ≤ (𝑥𝑁)))
3423, 25, 32, 33syl3anbrc 1165 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁)))
3514, 21, 34rspcdva 2794 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹‘(𝑥𝑁)) ∈ 𝑆)
3612, 35eqeltrd 2216 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
37 seq3shft.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
381, 2, 36, 37seqf 10234 . . 3 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)):(ℤ𝑀)⟶𝑆)
3938ffnd 5273 . 2 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) Fn (ℤ𝑀))
40 eqid 2139 . . . . . 6 (ℤ‘(𝑀𝑁)) = (ℤ‘(𝑀𝑁))
4140, 22, 15, 37seqf 10234 . . . . 5 (𝜑 → seq(𝑀𝑁)( + , 𝐹):(ℤ‘(𝑀𝑁))⟶𝑆)
4241ffnd 5273 . . . 4 (𝜑 → seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)))
43 seqex 10220 . . . . 5 seq(𝑀𝑁)( + , 𝐹) ∈ V
4443shftfn 10596 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) Fn (ℤ‘(𝑀𝑁)) ∧ 𝑁 ∈ ℂ) → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
4542, 6, 44syl2anc 408 . . 3 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))})
46 shftuz 10589 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
475, 22, 46syl2anc 408 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ‘((𝑀𝑁) + 𝑁)))
482zcnd 9174 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
4948, 6npcand 8077 . . . . . 6 (𝜑 → ((𝑀𝑁) + 𝑁) = 𝑀)
5049fveq2d 5425 . . . . 5 (𝜑 → (ℤ‘((𝑀𝑁) + 𝑁)) = (ℤ𝑀))
5147, 50eqtrd 2172 . . . 4 (𝜑 → {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} = (ℤ𝑀))
5251fneq2d 5214 . . 3 (𝜑 → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn {𝑥 ∈ ℂ ∣ (𝑥𝑁) ∈ (ℤ‘(𝑀𝑁))} ↔ (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀)))
5345, 52mpbid 146 . 2 (𝜑 → (seq(𝑀𝑁)( + , 𝐹) shift 𝑁) Fn (ℤ𝑀))
5448, 6negsubd 8079 . . . . . 6 (𝜑 → (𝑀 + -𝑁) = (𝑀𝑁))
5554adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑀 + -𝑁) = (𝑀𝑁))
5655seqeq1d 10224 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → seq(𝑀 + -𝑁)( + , 𝐹) = seq(𝑀𝑁)( + , 𝐹))
57 eluzelcn 9337 . . . . . 6 (𝑧 ∈ (ℤ𝑀) → 𝑧 ∈ ℂ)
5857adantl 275 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ ℂ)
596adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
6058, 59negsubd 8079 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝑧 + -𝑁) = (𝑧𝑁))
6156, 60fveq12d 5428 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
62 simpr 109 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
635adantr 274 . . . . 5 ((𝜑𝑧 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
6463znegcld 9175 . . . 4 ((𝜑𝑧 ∈ (ℤ𝑀)) → -𝑁 ∈ ℤ)
653ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝐹𝑉)
6659adantr 274 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑁 ∈ ℂ)
67 elfzelz 9806 . . . . . . . 8 (𝑦 ∈ (𝑀...𝑧) → 𝑦 ∈ ℤ)
6867adantl 275 . . . . . . 7 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℤ)
6968zcnd 9174 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → 𝑦 ∈ ℂ)
70 shftvalg 10608 . . . . . 6 ((𝐹𝑉𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7165, 66, 69, 70syl3anc 1216 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
7269, 66negsubd 8079 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝑦 + -𝑁) = (𝑦𝑁))
7372fveq2d 5425 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → (𝐹‘(𝑦 + -𝑁)) = (𝐹‘(𝑦𝑁)))
7471, 73eqtr4d 2175 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑦 ∈ (𝑀...𝑧)) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 + -𝑁)))
7536adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝐹 shift 𝑁)‘𝑥) ∈ 𝑆)
76 simpll 518 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝜑)
77 simpr 109 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀 + -𝑁)))
7854fveq2d 5425 . . . . . . . 8 (𝜑 → (ℤ‘(𝑀 + -𝑁)) = (ℤ‘(𝑀𝑁)))
7978eleq2d 2209 . . . . . . 7 (𝜑 → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8079ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝑥 ∈ (ℤ‘(𝑀 + -𝑁)) ↔ 𝑥 ∈ (ℤ‘(𝑀𝑁))))
8177, 80mpbid 146 . . . . 5 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → 𝑥 ∈ (ℤ‘(𝑀𝑁)))
8276, 81, 15syl2anc 408 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ‘(𝑀 + -𝑁))) → (𝐹𝑥) ∈ 𝑆)
8337adantlr 468 . . . 4 (((𝜑𝑧 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8462, 64, 74, 75, 82, 83seq3shft2 10246 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = (seq(𝑀 + -𝑁)( + , 𝐹)‘(𝑧 + -𝑁)))
85 shftvalg 10608 . . . 4 ((seq(𝑀𝑁)( + , 𝐹) ∈ V ∧ 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8643, 59, 58, 85mp3an2i 1320 . . 3 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧) = (seq(𝑀𝑁)( + , 𝐹)‘(𝑧𝑁)))
8761, 84, 863eqtr4d 2182 . 2 ((𝜑𝑧 ∈ (ℤ𝑀)) → (seq𝑀( + , (𝐹 shift 𝑁))‘𝑧) = ((seq(𝑀𝑁)( + , 𝐹) shift 𝑁)‘𝑧))
8839, 53, 87eqfnfvd 5521 1 (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  {crab 2420  Vcvv 2686   class class class wbr 3929   Fn wfn 5118  cfv 5123  (class class class)co 5774  cc 7618  cr 7619   + caddc 7623  cle 7801  cmin 7933  -cneg 7934  cz 9054  cuz 9326  ...cfz 9790  seqcseq 10218   shift cshi 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219  df-shft 10587
This theorem is referenced by:  iser3shft  11115  eftlub  11396
  Copyright terms: Public domain W3C validator