![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un0 | Unicode version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3262 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biorfi 698 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | uneqri 3115 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-dif 2976 df-un 2978 df-nul 3259 |
This theorem is referenced by: un00 3297 disjssun 3314 difun2 3329 difdifdirss 3334 disjpr2 3464 prprc1 3508 diftpsn3 3535 iununir 3767 suc0 4174 sucprc 4175 fvun1 5271 fmptpr 5387 fvunsng 5389 fvsnun1 5392 fvsnun2 5393 fsnunfv 5395 fsnunres 5396 rdg0 6036 omv2 6109 unsnfidcex 6440 unfidisj 6442 undiffi 6443 fzsuc2 9172 fseq1p1m1 9187 sizeunlem 9828 |
Copyright terms: Public domain | W3C validator |