ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1 GIF version

Theorem ensn1 6690
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensn1.1 . . . . 5 𝐴 ∈ V
2 0ex 4055 . . . . 5 ∅ ∈ V
31, 2f1osn 5407 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
41, 2opex 4151 . . . . . 6 𝐴, ∅⟩ ∈ V
54snex 4109 . . . . 5 {⟨𝐴, ∅⟩} ∈ V
6 f1oeq1 5356 . . . . 5 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
75, 6spcev 2780 . . . 4 ({⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
83, 7ax-mp 5 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
9 bren 6641 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
108, 9mpbir 145 . 2 {𝐴} ≈ {∅}
11 df1o2 6326 . 2 1o = {∅}
1210, 11breqtrri 3955 1 {𝐴} ≈ 1o
Colors of variables: wff set class
Syntax hints:  wex 1468  wcel 1480  Vcvv 2686  c0 3363  {csn 3527  cop 3530   class class class wbr 3929  1-1-ontowf1o 5122  1oc1o 6306  cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-1o 6313  df-en 6635
This theorem is referenced by:  ensn1g  6691  en1  6693  pm54.43  7046  1nprm  11795  en1top  12246
  Copyright terms: Public domain W3C validator