ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map1 GIF version

Theorem map1 6706
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1 (𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)

Proof of Theorem map1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6549 . . 3 𝑚 Fn (V × V)
2 1oex 6321 . . 3 1o ∈ V
3 elex 2697 . . 3 (𝐴𝑉𝐴 ∈ V)
4 fnovex 5804 . . 3 (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o𝑚 𝐴) ∈ V)
51, 2, 3, 4mp3an12i 1319 . 2 (𝐴𝑉 → (1o𝑚 𝐴) ∈ V)
62a1i 9 . 2 (𝐴𝑉 → 1o ∈ V)
7 0ex 4055 . . 3 ∅ ∈ V
872a1i 27 . 2 (𝐴𝑉 → (𝑥 ∈ (1o𝑚 𝐴) → ∅ ∈ V))
9 p0ex 4112 . . . 4 {∅} ∈ V
10 xpexg 4653 . . . 4 ((𝐴𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V)
119, 10mpan2 421 . . 3 (𝐴𝑉 → (𝐴 × {∅}) ∈ V)
1211a1d 22 . 2 (𝐴𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V))
13 el1o 6334 . . . . 5 (𝑦 ∈ 1o𝑦 = ∅)
1413a1i 9 . . . 4 (𝐴𝑉 → (𝑦 ∈ 1o𝑦 = ∅))
15 df1o2 6326 . . . . . . . 8 1o = {∅}
1615oveq1i 5784 . . . . . . 7 (1o𝑚 𝐴) = ({∅} ↑𝑚 𝐴)
1716eleq2i 2206 . . . . . 6 (𝑥 ∈ (1o𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴))
18 elmapg 6555 . . . . . . 7 (({∅} ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
199, 18mpan 420 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
2017, 19syl5bb 191 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (1o𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
217fconst2 5637 . . . . 5 (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅}))
2220, 21syl6rbb 196 . . . 4 (𝐴𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o𝑚 𝐴)))
2314, 22anbi12d 464 . . 3 (𝐴𝑉 → ((𝑦 ∈ 1o𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o𝑚 𝐴))))
24 ancom 264 . . 3 ((𝑦 = ∅ ∧ 𝑥 ∈ (1o𝑚 𝐴)) ↔ (𝑥 ∈ (1o𝑚 𝐴) ∧ 𝑦 = ∅))
2523, 24syl6rbb 196 . 2 (𝐴𝑉 → ((𝑥 ∈ (1o𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o𝑥 = (𝐴 × {∅}))))
265, 6, 8, 12, 25en2d 6662 1 (𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2686  c0 3363  {csn 3527   class class class wbr 3929   × cxp 4537   Fn wfn 5118  wf 5119  (class class class)co 5774  1oc1o 6306  𝑚 cmap 6542  cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-map 6544  df-en 6635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator