ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnen GIF version

Theorem mapsnen 6705
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1 𝐴 ∈ V
mapsnen.2 𝐵 ∈ V
Assertion
Ref Expression
mapsnen (𝐴𝑚 {𝐵}) ≈ 𝐴

Proof of Theorem mapsnen
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6549 . . 3 𝑚 Fn (V × V)
2 mapsnen.1 . . 3 𝐴 ∈ V
3 mapsnen.2 . . . 4 𝐵 ∈ V
43snex 4109 . . 3 {𝐵} ∈ V
5 fnovex 5804 . . 3 (( ↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ {𝐵} ∈ V) → (𝐴𝑚 {𝐵}) ∈ V)
61, 2, 4, 5mp3an 1315 . 2 (𝐴𝑚 {𝐵}) ∈ V
7 vex 2689 . . . 4 𝑧 ∈ V
87, 3fvex 5441 . . 3 (𝑧𝐵) ∈ V
98a1i 9 . 2 (𝑧 ∈ (𝐴𝑚 {𝐵}) → (𝑧𝐵) ∈ V)
10 vex 2689 . . . . 5 𝑤 ∈ V
113, 10opex 4151 . . . 4 𝐵, 𝑤⟩ ∈ V
1211snex 4109 . . 3 {⟨𝐵, 𝑤⟩} ∈ V
1312a1i 9 . 2 (𝑤𝐴 → {⟨𝐵, 𝑤⟩} ∈ V)
142, 3mapsn 6584 . . . . . 6 (𝐴𝑚 {𝐵}) = {𝑧 ∣ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩}}
1514abeq2i 2250 . . . . 5 (𝑧 ∈ (𝐴𝑚 {𝐵}) ↔ ∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩})
1615anbi1i 453 . . . 4 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
17 r19.41v 2587 . . . 4 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (∃𝑦𝐴 𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)))
18 df-rex 2422 . . . 4 (∃𝑦𝐴 (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
1916, 17, 183bitr2i 207 . . 3 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))))
20 fveq1 5420 . . . . . . . . . 10 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = ({⟨𝐵, 𝑦⟩}‘𝐵))
21 vex 2689 . . . . . . . . . . 11 𝑦 ∈ V
223, 21fvsn 5615 . . . . . . . . . 10 ({⟨𝐵, 𝑦⟩}‘𝐵) = 𝑦
2320, 22syl6eq 2188 . . . . . . . . 9 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑧𝐵) = 𝑦)
2423eqeq2d 2151 . . . . . . . 8 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑤 = 𝑦))
25 equcom 1682 . . . . . . . 8 (𝑤 = 𝑦𝑦 = 𝑤)
2624, 25syl6bb 195 . . . . . . 7 (𝑧 = {⟨𝐵, 𝑦⟩} → (𝑤 = (𝑧𝐵) ↔ 𝑦 = 𝑤))
2726pm5.32i 449 . . . . . 6 ((𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤))
2827anbi2i 452 . . . . 5 ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
29 anass 398 . . . . 5 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑦 = 𝑤)))
30 ancom 264 . . . . 5 (((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ∧ 𝑦 = 𝑤) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
3128, 29, 303bitr2i 207 . . . 4 ((𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ (𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
3231exbii 1584 . . 3 (∃𝑦(𝑦𝐴 ∧ (𝑧 = {⟨𝐵, 𝑦⟩} ∧ 𝑤 = (𝑧𝐵))) ↔ ∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})))
33 eleq1w 2200 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
34 opeq2 3706 . . . . . . 7 (𝑦 = 𝑤 → ⟨𝐵, 𝑦⟩ = ⟨𝐵, 𝑤⟩)
3534sneqd 3540 . . . . . 6 (𝑦 = 𝑤 → {⟨𝐵, 𝑦⟩} = {⟨𝐵, 𝑤⟩})
3635eqeq2d 2151 . . . . 5 (𝑦 = 𝑤 → (𝑧 = {⟨𝐵, 𝑦⟩} ↔ 𝑧 = {⟨𝐵, 𝑤⟩}))
3733, 36anbi12d 464 . . . 4 (𝑦 = 𝑤 → ((𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩}) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩})))
3810, 37ceqsexv 2725 . . 3 (∃𝑦(𝑦 = 𝑤 ∧ (𝑦𝐴𝑧 = {⟨𝐵, 𝑦⟩})) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
3919, 32, 383bitri 205 . 2 ((𝑧 ∈ (𝐴𝑚 {𝐵}) ∧ 𝑤 = (𝑧𝐵)) ↔ (𝑤𝐴𝑧 = {⟨𝐵, 𝑤⟩}))
406, 2, 9, 13, 39en2i 6664 1 (𝐴𝑚 {𝐵}) ≈ 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wex 1468  wcel 1480  wrex 2417  Vcvv 2686  {csn 3527  cop 3530   class class class wbr 3929   × cxp 4537   Fn wfn 5118  cfv 5123  (class class class)co 5774  𝑚 cmap 6542  cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-en 6635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator