Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemeqinf GIF version

Theorem nninfsellemeqinf 13215
Description: Lemma for nninfsel 13216. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
Assertion
Ref Expression
nninfsellemeqinf (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ 1o))
Distinct variable groups:   𝑄,𝑘,𝑛,𝑞   𝑖,𝑘,𝑛,𝑞   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑞)   𝑄(𝑖)   𝐸(𝑖,𝑘,𝑛,𝑞)

Proof of Theorem nninfsellemeqinf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . . . . . . 7 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
21nninfself 13212 . . . . . 6 𝐸:(2o𝑚)⟶ℕ
32a1i 9 . . . . 5 (𝜑𝐸:(2o𝑚)⟶ℕ)
4 nninfsel.q . . . . 5 (𝜑𝑄 ∈ (2o𝑚))
53, 4ffvelrnd 5556 . . . 4 (𝜑 → (𝐸𝑄) ∈ ℕ)
6 nninff 13201 . . . 4 ((𝐸𝑄) ∈ ℕ → (𝐸𝑄):ω⟶2o)
75, 6syl 14 . . 3 (𝜑 → (𝐸𝑄):ω⟶2o)
87ffnd 5273 . 2 (𝜑 → (𝐸𝑄) Fn ω)
9 1onn 6416 . . . . 5 1o ∈ ω
10 fnconstg 5320 . . . . 5 (1o ∈ ω → (ω × {1o}) Fn ω)
119, 10ax-mp 5 . . . 4 (ω × {1o}) Fn ω
12 fconstmpt 4586 . . . . 5 (ω × {1o}) = (𝑖 ∈ ω ↦ 1o)
1312fneq1i 5217 . . . 4 ((ω × {1o}) Fn ω ↔ (𝑖 ∈ ω ↦ 1o) Fn ω)
1411, 13mpbi 144 . . 3 (𝑖 ∈ ω ↦ 1o) Fn ω
1514a1i 9 . 2 (𝜑 → (𝑖 ∈ ω ↦ 1o) Fn ω)
16 elequ2 1691 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑖𝑗𝑖𝑘))
1716ifbid 3493 . . . . . . . . 9 (𝑗 = 𝑘 → if(𝑖𝑗, 1o, ∅) = if(𝑖𝑘, 1o, ∅))
1817mpteq2dv 4019 . . . . . . . 8 (𝑗 = 𝑘 → (𝑖 ∈ ω ↦ if(𝑖𝑗, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)))
1918fveq2d 5425 . . . . . . 7 (𝑗 = 𝑘 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑗, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))))
2019eqeq1d 2148 . . . . . 6 (𝑗 = 𝑘 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑗, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
214adantr 274 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → 𝑄 ∈ (2o𝑚))
22 nninfsel.1 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
2322adantr 274 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → (𝑄‘(𝐸𝑄)) = 1o)
24 simpr 109 . . . . . . . . 9 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
251, 21, 23, 24nninfsellemqall 13214 . . . . . . . 8 ((𝜑𝑗 ∈ ω) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑗, 1o, ∅))) = 1o)
2625ralrimiva 2505 . . . . . . 7 (𝜑 → ∀𝑗 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑗, 1o, ∅))) = 1o)
2726ad2antrr 479 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → ∀𝑗 ∈ ω (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑗, 1o, ∅))) = 1o)
28 simpr 109 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → 𝑘 ∈ suc 𝑗)
29 peano2 4509 . . . . . . . 8 (𝑗 ∈ ω → suc 𝑗 ∈ ω)
3029ad2antlr 480 . . . . . . 7 (((𝜑𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → suc 𝑗 ∈ ω)
31 elnn 4519 . . . . . . 7 ((𝑘 ∈ suc 𝑗 ∧ suc 𝑗 ∈ ω) → 𝑘 ∈ ω)
3228, 30, 31syl2anc 408 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → 𝑘 ∈ ω)
3320, 27, 32rspcdva 2794 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ 𝑘 ∈ suc 𝑗) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
3433ralrimiva 2505 . . . 4 ((𝜑𝑗 ∈ ω) → ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o)
3534iftrued 3481 . . 3 ((𝜑𝑗 ∈ ω) → if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = 1o)
36 omex 4507 . . . . . . 7 ω ∈ V
3736mptex 5646 . . . . . 6 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ V
3837a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ V)
39 fveq1 5420 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))))
4039eqeq1d 2148 . . . . . . . . 9 (𝑞 = 𝑄 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
4140ralbidv 2437 . . . . . . . 8 (𝑞 = 𝑄 → (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
4241ifbid 3493 . . . . . . 7 (𝑞 = 𝑄 → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
4342mpteq2dv 4019 . . . . . 6 (𝑞 = 𝑄 → (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
4443, 1fvmptg 5497 . . . . 5 ((𝑄 ∈ (2o𝑚) ∧ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) ∈ V) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
4521, 38, 44syl2anc 408 . . . 4 ((𝜑𝑗 ∈ ω) → (𝐸𝑄) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
46 suceq 4324 . . . . . . 7 (𝑛 = 𝑗 → suc 𝑛 = suc 𝑗)
4746adantl 275 . . . . . 6 (((𝜑𝑗 ∈ ω) ∧ 𝑛 = 𝑗) → suc 𝑛 = suc 𝑗)
4847raleqdv 2632 . . . . 5 (((𝜑𝑗 ∈ ω) ∧ 𝑛 = 𝑗) → (∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
4948ifbid 3493 . . . 4 (((𝜑𝑗 ∈ ω) ∧ 𝑛 = 𝑗) → if(∀𝑘 ∈ suc 𝑛(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
5035, 9eqeltrdi 2230 . . . 4 ((𝜑𝑗 ∈ ω) → if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) ∈ ω)
5145, 49, 24, 50fvmptd 5502 . . 3 ((𝜑𝑗 ∈ ω) → ((𝐸𝑄)‘𝑗) = if(∀𝑘 ∈ suc 𝑗(𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
52 eqidd 2140 . . . . . 6 (𝑖 = 𝑗 → 1o = 1o)
53 eqid 2139 . . . . . 6 (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ 1o)
5452, 53fvmptg 5497 . . . . 5 ((𝑗 ∈ ω ∧ 1o ∈ ω) → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
559, 54mpan2 421 . . . 4 (𝑗 ∈ ω → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
5655adantl 275 . . 3 ((𝜑𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ 1o)‘𝑗) = 1o)
5735, 51, 563eqtr4d 2182 . 2 ((𝜑𝑗 ∈ ω) → ((𝐸𝑄)‘𝑗) = ((𝑖 ∈ ω ↦ 1o)‘𝑗))
588, 15, 57eqfnfvd 5521 1 (𝜑 → (𝐸𝑄) = (𝑖 ∈ ω ↦ 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  c0 3363  ifcif 3474  {csn 3527  cmpt 3989  suc csuc 4287  ωcom 4504   × cxp 4537   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  1oc1o 6306  2oc2o 6307  𝑚 cmap 6542  xnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  nninfsel  13216
  Copyright terms: Public domain W3C validator