ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubmelm1fzo GIF version

Theorem ubmelm1fzo 10006
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 9962 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2 nnz 9076 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 274 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 nn0z 9077 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
54adantl 275 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
63, 5zsubcld 9181 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
76ancoms 266 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
8 peano2zm 9095 . . . . . 6 ((𝑁𝐾) ∈ ℤ → ((𝑁𝐾) − 1) ∈ ℤ)
97, 8syl 14 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) ∈ ℤ)
1093adant3 1001 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℤ)
11 simp3 983 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
124, 2anim12i 336 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
13123adant3 1001 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 znnsub 9108 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1513, 14syl 14 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1611, 15mpbid 146 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁𝐾) ∈ ℕ)
17 nnm1ge0 9140 . . . . 5 ((𝑁𝐾) ∈ ℕ → 0 ≤ ((𝑁𝐾) − 1))
1816, 17syl 14 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁𝐾) − 1))
19 elnn0z 9070 . . . 4 (((𝑁𝐾) − 1) ∈ ℕ0 ↔ (((𝑁𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝐾) − 1)))
2010, 18, 19sylanbrc 413 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℕ0)
21 simp2 982 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 nncn 8731 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2322adantl 275 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
24 nn0cn 8990 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2524adantr 274 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
26 1cnd 7785 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26subsub4d 8107 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) = (𝑁 − (𝐾 + 1)))
28 nn0p1gt0 9009 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1))
2928adantr 274 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 0 < (𝐾 + 1))
30 nn0re 8989 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
31 peano2re 7901 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
3230, 31syl 14 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ)
33 nnre 8730 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
34 ltsubpos 8219 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3532, 33, 34syl2an 287 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3629, 35mpbid 146 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁)
3727, 36eqbrtrd 3950 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) < 𝑁)
38373adant3 1001 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) < 𝑁)
39 elfzo0 9962 . . 3 (((𝑁𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁𝐾) − 1) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑁𝐾) − 1) < 𝑁))
4020, 21, 38, 39syl3anbrc 1165 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
411, 40sylbi 120 1 (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7621  cr 7622  0cc0 7623  1c1 7624   + caddc 7626   < clt 7803  cle 7804  cmin 7936  cn 8723  0cn0 8980  cz 9057  ..^cfzo 9922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-fz 9794  df-fzo 9923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator