ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0z GIF version

Theorem elnn0z 8497
Description: Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elnn0z (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))

Proof of Theorem elnn0z
StepHypRef Expression
1 nn0re 8416 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 elnn0 8409 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 118 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
43orcomd 681 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
5 3mix1 1108 . . . . . 6 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
6 3mix2 1109 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
75, 6jaoi 669 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
84, 7syl 14 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
9 elz 8486 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
101, 8, 9sylanbrc 408 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 nn0ge0 8432 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1210, 11jca 300 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
139simprbi 269 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
1413adantr 270 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
15 0nn0 8422 . . . . . 6 0 ∈ ℕ0
16 eleq1 2145 . . . . . 6 (𝑁 = 0 → (𝑁 ∈ ℕ0 ↔ 0 ∈ ℕ0))
1715, 16mpbiri 166 . . . . 5 (𝑁 = 0 → 𝑁 ∈ ℕ0)
1817a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 = 0 → 𝑁 ∈ ℕ0))
19 nnnn0 8414 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2019a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
21 simpr 108 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁)
22 0red 7234 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 0 ∈ ℝ)
23 zre 8488 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2423adantr 270 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ)
2522, 24lenltd 7346 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (0 ≤ 𝑁 ↔ ¬ 𝑁 < 0))
2621, 25mpbid 145 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ 𝑁 < 0)
27 nngt0 8183 . . . . . . 7 (-𝑁 ∈ ℕ → 0 < -𝑁)
2824lt0neg1d 7735 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁))
2927, 28syl5ibr 154 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 < 0))
3026, 29mtod 622 . . . . 5 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ¬ -𝑁 ∈ ℕ)
3130pm2.21d 582 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (-𝑁 ∈ ℕ → 𝑁 ∈ ℕ0))
3218, 20, 313jaod 1236 . . 3 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0))
3314, 32mpd 13 . 2 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℕ0)
3412, 33impbii 124 1 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3o 919   = wceq 1285  wcel 1434   class class class wbr 3805  cr 7094  0cc0 7095   < clt 7267  cle 7268  -cneg 7399  cn 8158  0cn0 8407  cz 8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485
This theorem is referenced by:  nn0zrab  8509  znn0sub  8549  nn0ind  8594  fnn0ind  8596  fznn0  9258  elfz0ubfz0  9265  elfz0fzfz0  9266  fz0fzelfz0  9267  elfzmlbp  9272  difelfzle  9274  difelfznle  9275  elfzo0z  9322  fzofzim  9326  ubmelm1fzo  9364  flqge0nn0  9427  zmodcl  9478  modqmuladdnn0  9502  modsumfzodifsn  9530  zsqcl2  9702  nn0abscl  10172  oexpneg  10484  oddnn02np1  10487  evennn02n  10489  nn0ehalf  10510  nn0oddm1d2  10516  divalgb  10532  dfgcd2  10610  ialgcvga  10640  hashgcdlem  10810
  Copyright terms: Public domain W3C validator