![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p2e8 | Structured version Visualization version GIF version |
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p2e8 | ⊢ (6 + 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11271 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 6824 | . . . 4 ⊢ (6 + 2) = (6 + (1 + 1)) |
3 | 6cn 11294 | . . . . 5 ⊢ 6 ∈ ℂ | |
4 | ax-1cn 10186 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10240 | . . . 4 ⊢ ((6 + 1) + 1) = (6 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2785 | . . 3 ⊢ (6 + 2) = ((6 + 1) + 1) |
7 | df-7 11276 | . . . 4 ⊢ 7 = (6 + 1) | |
8 | 7 | oveq1i 6823 | . . 3 ⊢ (7 + 1) = ((6 + 1) + 1) |
9 | 6, 8 | eqtr4i 2785 | . 2 ⊢ (6 + 2) = (7 + 1) |
10 | df-8 11277 | . 2 ⊢ 8 = (7 + 1) | |
11 | 9, 10 | eqtr4i 2785 | 1 ⊢ (6 + 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6813 1c1 10129 + caddc 10131 2c2 11262 6c6 11266 7c7 11267 8c8 11268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-addass 10193 ax-i2m1 10196 ax-1ne0 10197 ax-rrecex 10200 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 |
This theorem is referenced by: 6p3e9 11362 6t3e18 11834 83prm 16032 1259lem2 16041 1259lem5 16044 2503lem2 16047 2503lem3 16048 4001lem1 16050 log2ub 24875 hgt750lem2 31039 lhe4.4ex1a 39030 fmtno5faclem3 42003 |
Copyright terms: Public domain | W3C validator |