| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-5 | Structured version Visualization version GIF version | ||
| Description: Define the number 5. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-5 | ⊢ 5 = (4 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c5 12220 | . 2 class 5 | |
| 2 | c4 12219 | . . 3 class 4 | |
| 3 | c1 11045 | . . 3 class 1 | |
| 4 | caddc 11047 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7369 | . 2 class (4 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 5 = (4 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 5nn 12248 5re 12249 5cn 12250 5pos 12271 5m1e4 12287 4p1e5 12303 3p2e5 12308 4p2e6 12310 4lt5 12334 5p5e10 12696 6p5e11 12698 7p5e12 12702 8p5e13 12708 8p7e15 12710 9p5e14 12715 9p6e15 12716 5t5e25 12728 6t5e30 12732 7t5e35 12737 8t5e40 12743 9t5e45 12750 fldiv4p1lem1div2 13773 ef01bndlem 16128 prm23lt5 16761 5prm 17055 lt6abl 19809 log2ublem3 26891 ppiublem2 27147 bclbnd 27224 bposlem6 27233 bposlem9 27236 lgsdir2lem3 27271 2lgslem3c 27342 2lgsoddprmlem3c 27356 ex-exp 30429 ex-fac 30430 ex-bc 30431 3lexlogpow5ineq5 42041 aks4d1p1p7 42055 rmydioph 42996 expdiophlem2 43004 stoweidlem13 46004 fmtno5 47551 fmtnofac1 47564 31prm 47591 5odd 47704 sbgoldbo 47781 gpgprismgr4cycllem7 48084 gpgprismgr4cycllem9 48086 ackval50 48680 |
| Copyright terms: Public domain | W3C validator |