Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj1 Structured version   Visualization version   GIF version

Theorem atcvrj1 33529
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l = (le‘𝐾)
atcvrj1x.j = (join‘𝐾)
atcvrj1x.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj1x.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))

Proof of Theorem atcvrj1
StepHypRef Expression
1 simp3l 1082 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝑅)
2 hlatl 33459 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
323ad2ant1 1075 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝐾 ∈ AtLat)
4 simp21 1087 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐴)
5 simp23 1089 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑅𝐴)
6 eqid 2610 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
7 eqid 2610 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
8 atcvrj1x.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8atnem0 33417 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → (𝑃𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)))
103, 4, 5, 9syl3anc 1318 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃𝑅 ↔ (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾)))
111, 10mpbid 221 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃(meet‘𝐾)𝑅) = (0.‘𝐾))
12 simp1 1054 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝐾 ∈ HL)
13 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 8atbase 33388 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
154, 14syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃 ∈ (Base‘𝐾))
16 atcvrj1x.j . . . . 5 = (join‘𝐾)
17 atcvrj1x.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
1813, 16, 6, 7, 17, 8cvrp 33514 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅𝐴) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 𝑅)))
1912, 15, 5, 18syl3anc 1318 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → ((𝑃(meet‘𝐾)𝑅) = (0.‘𝐾) ↔ 𝑃𝐶(𝑃 𝑅)))
2011, 19mpbid 221 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑃 𝑅))
21 simp3r 1083 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃 (𝑄 𝑅))
22 atcvrj1x.l . . . . 5 = (le‘𝐾)
2322, 16, 8hlatexchb2 33492 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
24233adant3r 1315 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
2521, 24mpbid 221 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → (𝑃 𝑅) = (𝑄 𝑅))
2620, 25breqtrd 4604 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  lecple 15724  joincjn 16716  meetcmee 16717  0.cp0 16809  ccvr 33361  Atomscatm 33362  AtLatcal 33363  HLchlt 33449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450
This theorem is referenced by:  atcvrj2b  33530  atleneN  33532
  Copyright terms: Public domain W3C validator