MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinf2 Structured version   Visualization version   GIF version

Theorem axinf2 8481
Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf 8479 and Regularity ax-reg 8441.

This theorem should not be referenced in any proof. Instead, use ax-inf2 8482 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.)

Assertion
Ref Expression
axinf2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem axinf2
StepHypRef Expression
1 peano1 7032 . . 3 ∅ ∈ ω
2 peano2 7033 . . . 4 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
32ax-gen 1719 . . 3 𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)
4 zfinf 8480 . . . . . 6 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
54inf2 8464 . . . . 5 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
65inf3 8476 . . . 4 ω ∈ V
7 eleq2 2687 . . . . 5 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
8 eleq2 2687 . . . . . . 7 (𝑥 = ω → (𝑦𝑥𝑦 ∈ ω))
9 eleq2 2687 . . . . . . 7 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
108, 9imbi12d 334 . . . . . 6 (𝑥 = ω → ((𝑦𝑥 → suc 𝑦𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω)))
1110albidv 1846 . . . . 5 (𝑥 = ω → (∀𝑦(𝑦𝑥 → suc 𝑦𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))
127, 11anbi12d 746 . . . 4 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))))
136, 12spcev 3286 . . 3 ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)))
141, 3, 13mp2an 707 . 2 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
15 0el 3915 . . . . 5 (∅ ∈ 𝑥 ↔ ∃𝑦𝑥𝑧 ¬ 𝑧𝑦)
16 df-rex 2913 . . . . 5 (∃𝑦𝑥𝑧 ¬ 𝑧𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
1715, 16bitri 264 . . . 4 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
18 sucel 5757 . . . . . . 7 (suc 𝑦𝑥 ↔ ∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
19 df-rex 2913 . . . . . . 7 (∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)) ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2018, 19bitri 264 . . . . . 6 (suc 𝑦𝑥 ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2120imbi2i 326 . . . . 5 ((𝑦𝑥 → suc 𝑦𝑥) ↔ (𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2221albii 1744 . . . 4 (∀𝑦(𝑦𝑥 → suc 𝑦𝑥) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2317, 22anbi12i 732 . . 3 ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
2423exbii 1771 . 2 (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ ∃𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
2514, 24mpbi 220 1 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wrex 2908  c0 3891  suc csuc 5684  ωcom 7012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf 8479
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator