Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1442 Structured version   Visualization version   GIF version

Theorem bnj1442 32323
Description: Technical lemma for bnj60 32336. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1442.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1442.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1442.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1442.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1442.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1442.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1442.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1442.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1442.10 𝑃 = 𝐻
bnj1442.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1442.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1442.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1442.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1442.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1442.17 (𝜃 ↔ (𝜒𝑧𝐸))
bnj1442.18 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
Assertion
Ref Expression
bnj1442 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1442
StepHypRef Expression
1 bnj1442.18 . . 3 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
2 bnj1442.17 . . . 4 (𝜃 ↔ (𝜒𝑧𝐸))
3 bnj1442.16 . . . . . 6 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
43bnj930 32043 . . . . 5 (𝜒 → Fun 𝑄)
5 opex 5358 . . . . . . . 8 𝑥, (𝐺𝑍)⟩ ∈ V
65snid 4603 . . . . . . 7 𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩}
7 elun2 4155 . . . . . . 7 (⟨𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩} → ⟨𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
86, 7ax-mp 5 . . . . . 6 𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
9 bnj1442.12 . . . . . 6 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
108, 9eleqtrri 2914 . . . . 5 𝑥, (𝐺𝑍)⟩ ∈ 𝑄
11 funopfv 6719 . . . . 5 (Fun 𝑄 → (⟨𝑥, (𝐺𝑍)⟩ ∈ 𝑄 → (𝑄𝑥) = (𝐺𝑍)))
124, 10, 11mpisyl 21 . . . 4 (𝜒 → (𝑄𝑥) = (𝐺𝑍))
132, 12bnj832 32031 . . 3 (𝜃 → (𝑄𝑥) = (𝐺𝑍))
141, 13bnj832 32031 . 2 (𝜂 → (𝑄𝑥) = (𝐺𝑍))
15 elsni 4586 . . . 4 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
161, 15simplbiim 507 . . 3 (𝜂𝑧 = 𝑥)
1716fveq2d 6676 . 2 (𝜂 → (𝑄𝑧) = (𝑄𝑥))
18 bnj602 32189 . . . . . . . 8 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1918reseq2d 5855 . . . . . . 7 (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
2016, 19syl 17 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
219bnj931 32044 . . . . . . . . . 10 𝑃𝑄
2221a1i 11 . . . . . . . . 9 (𝜒𝑃𝑄)
23 bnj1442.7 . . . . . . . . . . . 12 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
24 bnj1442.6 . . . . . . . . . . . . 13 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
2524simplbi 500 . . . . . . . . . . . 12 (𝜓𝑅 FrSe 𝐴)
2623, 25bnj835 32032 . . . . . . . . . . 11 (𝜒𝑅 FrSe 𝐴)
27 bnj1442.5 . . . . . . . . . . . 12 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2827, 23bnj1212 32073 . . . . . . . . . . 11 (𝜒𝑥𝐴)
29 bnj906 32204 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3026, 28, 29syl2anc 586 . . . . . . . . . 10 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
31 bnj1442.15 . . . . . . . . . . 11 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
32 fndm 6457 . . . . . . . . . . 11 (𝑃 Fn trCl(𝑥, 𝐴, 𝑅) → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3331, 32syl 17 . . . . . . . . . 10 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3430, 33sseqtrrd 4010 . . . . . . . . 9 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃)
354, 22, 34bnj1503 32123 . . . . . . . 8 (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
362, 35bnj832 32031 . . . . . . 7 (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
371, 36bnj832 32031 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3820, 37eqtrd 2858 . . . . 5 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3916, 38opeq12d 4813 . . . 4 (𝜂 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
40 bnj1442.13 . . . 4 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
41 bnj1442.11 . . . 4 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4239, 40, 413eqtr4g 2883 . . 3 (𝜂𝑊 = 𝑍)
4342fveq2d 6676 . 2 (𝜂 → (𝐺𝑊) = (𝐺𝑍))
4414, 17, 433eqtr4d 2868 1 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  {crab 3144  [wsbc 3774  cun 3936  wss 3938  c0 4293  {csn 4569  cop 4575   cuni 4840   class class class wbr 5068  dom cdm 5557  cres 5559  Fun wfun 6351   Fn wfn 6352  cfv 6357   predc-bnj14 31960   FrSe w-bnj15 31964   trClc-bnj18 31966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-reg 9058  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-bnj17 31959  df-bnj14 31961  df-bnj13 31963  df-bnj15 31965  df-bnj18 31967
This theorem is referenced by:  bnj1423  32325
  Copyright terms: Public domain W3C validator