![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1442 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31458. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1442.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1442.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1442.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1442.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1442.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1442.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1442.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1442.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1442.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1442.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1442.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1442.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1442.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
bnj1442.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1442.17 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
bnj1442.18 | ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
Ref | Expression |
---|---|
bnj1442 | ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1442.18 | . . 3 ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) | |
2 | bnj1442.17 | . . . 4 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
3 | bnj1442.16 | . . . . . 6 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
4 | 3 | bnj930 31168 | . . . . 5 ⊢ (𝜒 → Fun 𝑄) |
5 | opex 5081 | . . . . . . . 8 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ V | |
6 | 5 | snid 4353 | . . . . . . 7 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} |
7 | elun2 3924 | . . . . . . 7 ⊢ (〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} → 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
9 | bnj1442.12 | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
10 | 8, 9 | eleqtrri 2838 | . . . . 5 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 |
11 | funopfv 6397 | . . . . 5 ⊢ (Fun 𝑄 → (〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 → (𝑄‘𝑥) = (𝐺‘𝑍))) | |
12 | 4, 10, 11 | mpisyl 21 | . . . 4 ⊢ (𝜒 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
13 | 2, 12 | bnj832 31156 | . . 3 ⊢ (𝜃 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
14 | 1, 13 | bnj832 31156 | . 2 ⊢ (𝜂 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
15 | elsni 4338 | . . . 4 ⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) | |
16 | 1, 15 | simplbiim 661 | . . 3 ⊢ (𝜂 → 𝑧 = 𝑥) |
17 | 16 | fveq2d 6357 | . 2 ⊢ (𝜂 → (𝑄‘𝑧) = (𝑄‘𝑥)) |
18 | bnj602 31313 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | |
19 | 18 | reseq2d 5551 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
21 | 9 | bnj931 31169 | . . . . . . . . . 10 ⊢ 𝑃 ⊆ 𝑄 |
22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ (𝜒 → 𝑃 ⊆ 𝑄) |
23 | bnj1442.7 | . . . . . . . . . . . 12 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
24 | bnj1442.6 | . . . . . . . . . . . . 13 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
25 | 24 | simplbi 478 | . . . . . . . . . . . 12 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
26 | 23, 25 | bnj835 31157 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
27 | bnj1442.5 | . . . . . . . . . . . 12 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
28 | 27, 23 | bnj1212 31198 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
29 | bnj906 31328 | . . . . . . . . . . 11 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | |
30 | 26, 28, 29 | syl2anc 696 | . . . . . . . . . 10 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
31 | bnj1442.15 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
32 | fndm 6151 | . . . . . . . . . . 11 ⊢ (𝑃 Fn trCl(𝑥, 𝐴, 𝑅) → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
33 | 31, 32 | syl 17 | . . . . . . . . . 10 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
34 | 30, 33 | sseqtr4d 3783 | . . . . . . . . 9 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃) |
35 | 4, 22, 34 | bnj1503 31247 | . . . . . . . 8 ⊢ (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
36 | 2, 35 | bnj832 31156 | . . . . . . 7 ⊢ (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
37 | 1, 36 | bnj832 31156 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
38 | 20, 37 | eqtrd 2794 | . . . . 5 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
39 | 16, 38 | opeq12d 4561 | . . . 4 ⊢ (𝜂 → 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
40 | bnj1442.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
41 | bnj1442.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
42 | 39, 40, 41 | 3eqtr4g 2819 | . . 3 ⊢ (𝜂 → 𝑊 = 𝑍) |
43 | 42 | fveq2d 6357 | . 2 ⊢ (𝜂 → (𝐺‘𝑊) = (𝐺‘𝑍)) |
44 | 14, 17, 43 | 3eqtr4d 2804 | 1 ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {cab 2746 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 {crab 3054 [wsbc 3576 ∪ cun 3713 ⊆ wss 3715 ∅c0 4058 {csn 4321 〈cop 4327 ∪ cuni 4588 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 Fun wfun 6043 Fn wfn 6044 ‘cfv 6049 predc-bnj14 31084 FrSe w-bnj15 31088 trClc-bnj18 31090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-reg 8664 ax-inf2 8713 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7232 df-1o 7730 df-bnj17 31083 df-bnj14 31085 df-bnj13 31087 df-bnj15 31089 df-bnj18 31091 |
This theorem is referenced by: bnj1423 31447 |
Copyright terms: Public domain | W3C validator |