Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsiga Structured version   Visualization version   GIF version

Theorem brsiga 30526
Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
brsiga 𝔅 ∈ (sigaGen “ Top)

Proof of Theorem brsiga
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-brsiga 30525 . 2 𝔅 = (sigaGen‘(topGen‘ran (,)))
2 retop 22737 . . 3 (topGen‘ran (,)) ∈ Top
3 df-sigagen 30482 . . . . 5 sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
43funmpt2 6076 . . . 4 Fun sigaGen
5 fvex 6350 . . . . . 6 (topGen‘ran (,)) ∈ V
6 sigagensiga 30484 . . . . . 6 ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))))
7 elrnsiga 30469 . . . . . 6 ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra)
85, 6, 7mp2b 10 . . . . 5 (sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra
9 0elsiga 30457 . . . . 5 ((sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,))))
10 elfvdm 6369 . . . . 5 (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen)
118, 9, 10mp2b 10 . . . 4 (topGen‘ran (,)) ∈ dom sigaGen
12 funfvima 6643 . . . 4 ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)))
134, 11, 12mp2an 710 . . 3 ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))
142, 13ax-mp 5 . 2 (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)
151, 14eqeltri 2823 1 𝔅 ∈ (sigaGen “ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2127  {crab 3042  Vcvv 3328  wss 3703  c0 4046   cuni 4576   cint 4615  dom cdm 5254  ran crn 5255  cima 5257  Fun wfun 6031  cfv 6037  (,)cioo 12339  topGenctg 16271  Topctop 20871  sigAlgebracsiga 30450  sigaGencsigagen 30481  𝔅cbrsiga 30524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-pre-lttri 10173  ax-pre-lttrn 10174
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-po 5175  df-so 5176  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-ioo 12343  df-topgen 16277  df-top 20872  df-bases 20923  df-siga 30451  df-sigagen 30482  df-brsiga 30525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator